A Pair of Linear Canonical Hankel Transformations of Random Order
Article
First Online:
- 27 Downloads
Abstract
Present paper is devoted to study a pair of linear canonical Hankel transformations of random order and its inverse. Some interesting properties of these transformations are given. Finally, these transformations are used to obtain the solution of some partial differential equations involving Bessel type differential operators.
Keywords
Linear canonical transformation Hankel transformation Zemanian spaceMathematics Subject Classification
Primary 65R10 46F12 53D22 Secondary 46F05Notes
References
- 1.Bultheel, A., Martínez-Sulbaran, H.: Recent developments in the theory of the fractional Fourier and linear canonical transforms. Bull. Belg. Math. Soc. Simon Stevin 13(5), 971–1005 (2007)MathSciNetzbMATHGoogle Scholar
- 2.Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)CrossRefGoogle Scholar
- 3.Erdélyi, A.: Tables of Integral Transformation, vol. 2. McGraw-Hill, New York (1954)Google Scholar
- 4.Koh, E.L., Li, C.K.: On the inverse of the Hankel transform. Integral Transforms Spec. Funct. 2(4), 279–282 (1994)MathSciNetCrossRefGoogle Scholar
- 5.Koh, E.L., Li, C.K.: The Hankel transformation of Banach-space-valued generalized functions. Proc. Am. Math. Soc. 119(1), 153–163 (1993)MathSciNetCrossRefGoogle Scholar
- 6.Linares, M.L., Mendez Pérez, J.M.R.: Hankel complementary integral transformations of arbitrary order. Int. J. Math. Math. Sci. 15(2), 323–332 (1992)MathSciNetCrossRefGoogle Scholar
- 7.Malgonde, S.P., Bandewar, S.R.: On the generalized Hankel type integral transformation of arbitrary order. Bull. Cal. Math. Soc. 99(3), 251–260 (2007)MathSciNetzbMATHGoogle Scholar
- 8.Malgonde, S.P., Debnath, L.: On Hankel type integral transformations of generalized functions. Integral Transforms Spec. Funct. 15(5), 421–430 (2004)MathSciNetCrossRefGoogle Scholar
- 9.Mendez, J.M.: A mixed Parseval equation and the generalized Hankel transformations. Proc. Am. Math. Soc. 102(3), 619–624 (1988)MathSciNetCrossRefGoogle Scholar
- 10.Ozaktas, M.H., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2001)Google Scholar
- 11.Pathak, R.S.: Integral Transforms of Generalized Functions and Their Applications. Gordon Breach Science Publishers, Amsterdam (1997)zbMATHGoogle Scholar
- 12.Pei, S.C., Ding, J.J.: Eigenfunctions of linear canonical transform. IEEE Trans. Signal Process. 50(1), 11–26 (2002)MathSciNetCrossRefGoogle Scholar
- 13.Pérez, J.M.R.M., Robayna, M.M.S.: A pair of generalized Hankel–Clifford transformations and their applications. J. Math. Anal. Appl. 154(2), 543–557 (1991)MathSciNetCrossRefGoogle Scholar
- 14.Prasad, A., Kumar, P.: Composition of pseudo differential operators associated with fractional Hankel–Clifford integral transformations. Appl. Anal. 95(8), 1792–1807 (2016)MathSciNetCrossRefGoogle Scholar
- 15.Prasad, A., Kumar, T.: A pair of linear canonical Hankel transformations and associated pseudo-differential operators. Appl. Anal. 97(15), 2727–2742 (2018)MathSciNetCrossRefGoogle Scholar
- 16.Prasad, A., Maurya, P.K.: A couple of fractional powers of Hankel-type integral transformations of arbitrary order. Boll. Unione Mat. Ital. 9(3), 323–339 (2016)MathSciNetCrossRefGoogle Scholar
- 17.Torre, A.: Hankel type integral transforms and their fractionalization: a note. Integral Transforms Spec. Funct. 19(4), 277–292 (2008)MathSciNetCrossRefGoogle Scholar
- 18.Torre, A.: Linear and radial canonical transforms of fractional order. J. Comput. Appl. Math. 153(1–2), 477–486 (2003)MathSciNetCrossRefGoogle Scholar
- 19.Zemanian, A.H.: Generalized Integral Transforms. Interscience Publishers, New York (1968)zbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019