A Note on Supercyclic Operators in Locally Convex Spaces

  • Angela A. AlbaneseEmail author
  • David Jornet


We treat some questions related to supercyclicity of continuous linear operators when acting in locally convex spaces. We extend results of Ansari and Bourdon and consider doubly power bounded operators in this general setting. Some examples are given.


Supercyclic operators doubly power bounded operators isometry locally convex spaces 

Mathematics Subject Classification

Primary 46A04 47A16 



We are indebted to Prof. José Bonet for his helpful suggestions on the topic of this paper. The authors were partially supported by the project MTM2016-76647-P.


  1. 1.
    Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory, volume 50 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)Google Scholar
  2. 2.
    Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Op. Theory 85(2), 259–287 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. (Szeged) 63(1–2), 195–207 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bayart, F., Matheron, E.: Dynamics of linear operators, volume 179 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  5. 5.
    Beltrán, M.J., Bonet, J., Fernández, C.: Classical operators on the Hörmander algebras. Discret. Contin. Dyn. Syst. 35(2), 637–652 (2015)CrossRefGoogle Scholar
  6. 6.
    Bonet, J., Domański, P.: A note on mean ergodic composition operators on spaces of holomorphic functions. Rev. R. Acad. Cienc. Exact. Fís. Nat. Ser. A Math. RACSAM 105(2), 389–396 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bonet, J., Domański, P.: Power bounded composition operators on spaces of analytic functions. Collect. Math. 62(1), 69–83 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Studia Math. 165(2), 135–157 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fernández, C., Galbis, A., Jordá, E.: Dynamics and spectra of composition operators on the Schwartz space. J. Funct. Anal. 274(12), 3503–3530 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Galbis, A., Jordá, E.: Composition operators on the Schwartz space. Rev. Math. Iberoam. 34(1), 397–412 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lorch, E.R.: The integral representation of weakly almost-periodic transformations in reflexive vector spaces. Trans. Am. Math. Soc. 49, 18–40 (1941)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). (Translated from the German by M. S. Ramanujan and revised by the authors.) Google Scholar
  13. 13.
    Müller, V.: Power bounded operators and supercyclic vectors. Proc. Am. Math. Soc. 131(12), 3807–3812 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Müller, V.: Power bounded operators and supercyclic vectors. II. Proc. Am. Math. Soc. 133(10), 2997–3004 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Fisica “E. De Giorgi”Università del SalentoLecceItaly
  2. 2.Instituto Universitario de Matemática Pura y Aplicada IUMPAUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations