Advertisement

Screen Generic Lightlike Submanifolds

  • Burçin Doğan
  • Bayram ŞahinEmail author
  • Erol Yaşar
Article
  • 83 Downloads

Abstract

In this study, we introduce a new class of lightlike submanifolds for indefinite Kähler manifolds which particulary contain invariant lightlike, screen real lightlike and generic lightlike submanifolds and we call this submanifolds as screen generic lightlike submanifolds. After giving an example of a screen generic lightlike submanifold, we investigate the integrability of various distributions and prove a characterization theorem of such lightlike submanifolds in a complex space form. Then we find necessary conditions for the induced connection to be metric connection. Moreover, we investigate the existence of totally umbilical screen generic lightlike submanifolds and minimal screen generic lightlike submanifolds.

Keywords

Indefinite Kähler manifold Lightlike submanifold Generic lightlike submanifold Killing horizon Minimal lightlike submanifold 

Mathematics Subject Classification

53C15 53C50 

Notes

References

  1. 1.
    Barros, M., Romero, A.: Indefinite Kähler manifolds. Math. Ann. 261, 55–62 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bejan, C.L., Duggal, K.L.: Global lightlike manifolds and harmonicity. Kodai Math. J. 28, 131–145 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bejancu, A.: Geometry of CR-Submanifolds. Kluwer Academic, Dordrecht (1986)CrossRefGoogle Scholar
  4. 4.
    Bejancu, A., Duggal, K.L.: Lightlike submanifolds of semi-Riemannian manifolds. Acta Appl. Math. 38, 197–215 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blair, D.E., Chen, B.Y.: On CR-submanifolds of Hermitian manifolds. Isreal J. Math. 34, 353–363 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, B.Y.: CR-submanifolds of a Kähler Manifold, I-II. J. Differ. Geom. 16(305–322), 493–509 (1981)CrossRefGoogle Scholar
  7. 7.
    Chen, B.Y.: Differential geometry of real Submanifolds in a K ähler manifold. Monatshefte Math. 91, 257–274 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Duggal, K.L., Bejancu, A.: CR-Hypersurfaces of Indefinite Kähler Manifolds. Acta Appl. Math. 31, 171–190 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Duggal, K.L., Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and its Applications. Kluwer Academic, Dordrecht (1996)CrossRefGoogle Scholar
  10. 10.
    Duggal, K.L., Jin, D.H.: Generic lightlike submanifolds an indefinite Sasakian manifold. Int. Electron. J. Geom. 5(1), 108–119 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Duggal, K.L., Jin, D.H.: Totally umbilical lightlike submanifolds. Kodai Math. J. 26, 49–68 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duggal, K.L., Sahin, B.: Screen Cauchy Riemann lightlike submanifolds. Acta Math. Hung. 106(1–2), 137–165 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Duggal, K.L., Sahin, B.: Generalized Cauchy Riemann lightlike submanifolds. Acta Math. Hung. 112(1–2), 107–130 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Duggal, K.L., Sahin, B.: Differential Geometry of Lightlike Submanifolds. Birkhauser, Basel (2010)CrossRefGoogle Scholar
  15. 15.
    Erdoğan, F.E., Perktaṣ, S.Y., Güneṣ, R.: Half-lightlike submanifolds with degenerate and non-degenerate planar normal sections in pseudo-Euclidean spaces. Int. J. Geom. 7(1), 37–53 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Erdoğan, F.E., Yıldırım, C.: Lightlike submanifolds with planar normal section in semi Riemannian product manifolds. Int. Electron. J. Geom. 9(1), 70–77 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Esposito, G.: From spinor geometry to complex general relativity. Int. J. Geom. Methods Mod. Phys. 2, 675–731 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Flaherty, E.J.: Hermitian and Kählerian Geometry in Relativity. Lecture Notes in Physics, vol. 46. Springer, New York (1976)CrossRefGoogle Scholar
  19. 19.
    Galloway, G.J.: Lecture notes on Spacetime Geometry. Beijing International Mathematics Research Center, pp. 1–55 (2007)Google Scholar
  20. 20.
    Gupta, R.S., Sharfuddin, A.: Screen transversal lightlike submanifolds of indefinite cosymplectic manifolds. Rend. Semin. Mat. Univ. Padova 124, 145–156 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gupta, R.S., Upadhyay, A., Sharfuddin, A.: Slant lightlike submanifolds of indefinite cosymplectic manifolds. Mediterr. J. Math. 8(2), 215–227 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)CrossRefGoogle Scholar
  23. 23.
    Jin, D.H., Lee, J.W.: Generic lightlike submanifolds of an indefinite Kähler manifold. Int. J. Pure Appl. Math. 101(4), 543–560 (2015)Google Scholar
  24. 24.
    Jin, D.H., Lee, J.W.: Generic lightlike submanifolds of an indefinite cosymplectic manifold. Math. Probl. Eng. 610986, 16 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kumar, S.: Geometry of warped product lightlike submanifolds of indefinite nearly Kaehler manifolds. J. Geom. 109(1), 21 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kupeli, D.N.: Singular Semi-Riemannian Geometry. Kluwer Academic Publishers, Dortrecht (1996)CrossRefGoogle Scholar
  27. 27.
    Lerner, D.E., Sommers, P.D.: Complex Manifold Techniques in Theoretical Physics. Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston (1979)zbMATHGoogle Scholar
  28. 28.
    Poyraz, N.Ö., Yaşar, E.: Lightlike hypersurfaces of a golden semi-Riemannian manifold. Mediterr. J. Math. 14(5), 204 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Şahin, B.: Screen transversal lightlike submanifolds of Kähler manifolds. Chaos Solitons Fractals 38, 1439–1448 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Şahin, B., Güneş, R.: Geodesic CR-lightlike submanifolds. Beiträge Algebra Geom. 42(2), 583–594 (2001)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Upadhyay, A., Gupta, R.S., Sharfuddin, A.: Screen conformal lightlike hypersurfaces of an indefinite cosymplectic manifold. Georgian Math. J. 24(4), 609–620 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Woodhouse, N.: The real geometry of complex spacetimes. Int. J. Theor. Phys. 16(9), 663–670 (1977)CrossRefGoogle Scholar
  33. 33.
    Yano, K., Kon, M.: CR-submanifolds of Kä hlerian and Sasakian manifolds. Birkhauser, Basel (1983)CrossRefGoogle Scholar
  34. 34.
    Yıldırım, C., Erdoğan, F.E.: Radical screen transversal lightlike submanifolds of semi-Riemannian product manifolds. Math. Sci. Appl. E Notes 3(1), 75–85 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsMersin UniversityMersinTurkey
  2. 2.Department of MathematicsEge UniversityIzmirTurkey

Personalised recommendations