Advertisement

Orbital Stability and Instability of Solitary Waves for a Class of Dispersive Symmetric Regularized Long-Wave Equation

  • Sevdzhan HakkaevEmail author
Article
  • 42 Downloads

Abstract

This paper studies the orbital stability and instability of solitary wave solutions of the generalized symmetric regularized long-wave-type equations. It is shown that a traveling wave may be stable or unstable depending on the range of the waves speed of propagation and the relation between the dispersion (i.e., the order of the pseudodifferential operator) and the nonlinearity.

Keywords

Solitary waves regularized long-wave equation orbital stability 

Mathematics Subject Classification

35B35 35B40 35G30 

Notes

References

  1. 1.
    Albert, J.P.: Positivity properties and stability of solitary wave solutions of model equations for long waves. Commun. Partial Differ. Equ. 17, 1–22 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albert, J.P., Bona, J.L.: Total positivity and stability of internal waves in stratified fluids of finite depth. IMA J. Appl. Math. 46, 1–19 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albert, J.P., Bona, J.L., Henry, D.B.: Suffucient conditions for stability of solitary-wave solutions of model equations for long waves. Physica 24D, 343–366 (1987)zbMATHGoogle Scholar
  4. 4.
    Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 328, 153–183 (1972)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benjamin, T.B., Bona, J.L., Bose, D.K.: Solitary-waves solutions of nonlinear problems. Philos. Trans. R. Soc. Lond. Ser. A (1990).  https://doi.org/10.1098/rsta.1990.0065 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bona, J.L.: On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A 344, 363–374 (1975)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bona, J.L., Souganidis, P., Strauss, W.: Stability and instability of solitary waves of Korteweg-de Vries type. Proc. R. Soc. Lond. Ser. A 411, 395–412 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bona, J.L., Sachs, R.: Global existence of smooth solutions and stability of solitary waves for generalized Boussinesq equation. Commun. Math. Phys. 118, 1529 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, L.: Stability and instability of solitary waves for generalized symmetric-regularized-long-wave equations. Physica D 118, 53–68 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 94, 308–348 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Iliev, I., Khristov, E., Kirchev, K.: Spectral methods in Soliton equations. In: Pitman Monograph and Surveys in Pure and Applied Mathematics, vol. 73. Longman Scientific & Technical, Harlow, Essex, England; Wiley, New York (1994)Google Scholar
  13. 13.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefGoogle Scholar
  14. 14.
    Seyler, C.R., Fenstermacher, D.C.: A symmetric regularized-long-wave equation. Phys. Fluids 27(1), 4–7 (1984)CrossRefGoogle Scholar
  15. 15.
    Souganidis, P., Strauss, W.: Instability of a class of dispersive solitary waves. Proc. R. Soc. Edinb. A114, 195–212 (1990)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Weinstein, M.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Commun. Partial Differ. Equ. 12, 1133–1177 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceIstanbul Aydin UniversityIstanbulTurkey

Personalised recommendations