Advertisement

Some Remarks Concerning Anti-Hermitian Metrics

  • Arif Salimov
  • Shabnam AzizovaEmail author
Article
  • 79 Downloads

Abstract

We show that if a torsion tensor of anti-Hermitian metric connection is pure, then the given anti-Hermitian manifold is anti-Kähler. We prove that if an anti-Hermitian manifold is a conformally flat anti-Kähler–Codazzi manifold, then the scalar curvature vanishes, if and only if the given manifold is isotropic anti-Kähler. We also consider anti-Hermitian metrics of Hessian type defined by holomorphic Hamiltonian functions. Finally, we consider an example of anti-Kähler metrics on Walker 4-manifold.

Keywords

Anti-Kähler–Codazzi manifold isotropic anti-Kähler manifold holomorphic function metric connection with torsion Walker metric 

Mathematics Subject Classification

53C15 53C56 

Notes

Acknowledgements

The authors would like to express their gratitude to the referee for valuable suggestions and comments.

References

  1. 1.
    Bejan, C.-L., Druta-Romaniuc, S.-L.: Harmonic functions and quadratic harmonic morphisms on Walker space. Turk. J. Math. 40(5), 1004–1019 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borowiec, A., Francaviglia, M., Volovich, I.: Anti-Kählerian manifolds. Diff. Geom. Appl. 12(3), 281–289 (2000)CrossRefGoogle Scholar
  3. 3.
    Etayo, F., Santamaria, R.: (J2 \(=\pm \)1)-metric manifolds. Publ. Math. Debrecen. 57(3–4), 435–444 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fernandez-Culma, E.A., Godoy, Y.: Anti-Kahlerian geometry on Lie groups. Math. Phys. Anal. Geom. 21(1), 8 (2018)CrossRefGoogle Scholar
  5. 5.
    Ganchev, G.T., Borisov, A.V.: Note on the almost complex manifolds with a Norden metric. C. R. Acad. Bulgare Sci. 39(5), 31–34 (1986)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Iscan, M., Salimov, A.: On Kähler-Norden manifolds. Proc. Indian Acad. Sci. (Math. Sci.) 119(1), 71–80 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Manev, M.: Associated Nijenhuis tensors on manifolds with almost hypercomplex structures and metrics of Hermitian-Norden type. Results Math. 71(3–4), 1327–1343 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Matsushita, Y.: Four-dimensional Walker metrics and symplectic structures. J. Geom. Phys. 52(1), 89–99 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Matsushita, Y.: Walker 4-manifolds with proper almost complex structures. J. Geom. Phys. 55(4), 71–80 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mekerov, D.: Connection with parallel totally skew-symmetric torsion on almost complex manifolds with Norden metric. C. R. Acad. Bulgare Sci. 62(12), 1501–1508 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Nannicini, A.: Generalized geometry of Norden manifolds. J. Geom. Phys. 99, 244–255 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Oproiu, V.: General natural almost Hermitian and anti-Hermitian structures on the tangent bundles. Bull. Math. Soc. Sci. Math. Roumanie 43(93), 325–340 (2000)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Salimov, A.: Almost psi-holomorphic tensors and their properties. Dokl. Acad. Nauk. 324(3), 533–536 (1992)zbMATHGoogle Scholar
  14. 14.
    Salimov, A.: On operators associated with tensor fields. J. Geom. 99(1–2), 107–145 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Salimov, A., Turanli, S.: Curvature properties of anti-Kähler-Codazzi manifolds. C. R. Math. Acad. Sci. Paris 351(5–6), 225–227 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Salimov, A., Akbulut, K., Turanli, S.: On an isotropic property of anti-Kähler-Codazzi manifolds. C. R. Math. Acad. Sci. Paris 351(21–22), 837–839 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Salimov, A.: On anti-Hermitian metric connections. C. R. Math. Acad. Sci. Paris 352(9), 731–735 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sluka, K.: On the curvature of Kahler-Norden manifolds. J. Geom. Phys. 54(2), 131–145 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tachibana, S.: Analytic tensor and its generalization. Tohoku Math. J. 12(2), 208–221 (1960)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Algebra and GeometryBaku State UniversityBakuAzerbaijan

Personalised recommendations