PC-Mild Solutions to Sobolev-Type Fractional Differential Equations with Non-instantaneous Impulses

  • Vikram SinghEmail author
  • Dwijendra N. Pandey


In this paper, we study the existence and uniqueness of piecewise-continuous (in brief, PC)-mild solutions for Sobolev-type fractional impulsive differential equations (in brief, STFIDEs) with state-dependent delay by virtue of Kuratowski measure of noncompactness in a Banach space. We establish a general framework to find PC-mild solutions for STFIDEs with compact and noncompact semigroups, which will provide an effective way to deal with such problems. Finally, an application is given to illustrate that our results are valuable.


Fractional calculus Sobolev-type fractional impulsive differential equations Measure of noncompactness PC-mild solutions not-instantaneous impulses State-dependent delay 

Mathematics Subject Classification

26A33 34A08 34A12 34A37 34G20 35R11 35R12 



The work of the first author is supported by the “Ministry of Human Resource and Development, India under Grant Number: MHR-02-23-200-44”.


  1. 1.
    Abbas, S., Benchohra, M.: Impulsive partial hyperbolic functional differential equations of fractional order with state-dependent delay. Fract. Calc. Appl. Anal. 13, 225–244 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Agarwal, R.P., De Andrade, B.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62, 1143–1149 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bana’s, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. In: Lecture Notes in Pure and Applied Mathematics, Volume 60, Marcel Dekker, New York (1980)Google Scholar
  4. 4.
    Benchohra, M., Berhoun, F.: Impulsive fractional differential equations with state dependent delay. Commun. Appl. Anal. 14(2), 213–224 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Benchohra, M., Litimein, S., NGuerekata, G.: On fractional integro-differential inclusions with state-dependent delay in Banach spaces. Appl. Anal. (2011). MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. In: Contemporary Mathematics and Its Applications, vol. 2, Hindawi Publishing Corporation, New York (2006)Google Scholar
  7. 7.
    Chadha, A., Pandey, D.N.: Existence of the mild solution for impulsive semilinear differential equation. Int. J. Partial Differ. Eqn. (2014). CrossRefGoogle Scholar
  8. 8.
    Chadha, A., Pandey, D.N.: Faedo–Galerkin approximation of solution for a nonlocal neutral fractional differential equation with deviating argument. Mediterr. J. Math. 13(5), 3041–3067 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, P., Zhang, X., Li, Y.: Existence of mild solutions to partial differential equations with non-instantaneous impulses. Electron. J. Differ. Equ. 241, 1–11 (2016)MathSciNetGoogle Scholar
  10. 10.
    Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245, 74–85 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Debbouche, A., Torres, D.F.M.: Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions. Fract. Calc. Appl. Anal. 18, 95–121 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)CrossRefGoogle Scholar
  13. 13.
    Fu, X., Liu, X., Lu, B.: On a new class of impulsive fractional evolution equations. Adv. Differ. Equ. 227, 1–16 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Feckan, M., Wang, J.R., Zhou, Y.: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory. Appl. 156(1), 79–95 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  16. 16.
    Gou, H., Li, B.: Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42, 204–214 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hernandez, E., ORegan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Heinz, H.P.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7, 1351–1371 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kerboua, M., Debbouche, A., Baleanu, D.: Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces. Electron. J. Qual. Theory Differ. Equ. 58, 1–16 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, New York (2006)CrossRefGoogle Scholar
  21. 21.
    Lakshmikantham, V., Bainov, D., Simeonov, P.S.: Theory of impulsive differential equations. Ser. Mod. Appl. Math. (1989). CrossRefGoogle Scholar
  22. 22.
    Li, Y.: Existence of solutions of initial value problems for abstract semilinear evolution equations. Acta Math. Sin. 48, 1089–1094 (2005). (in Chinese)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Li, F., Liang, J., Xu, H.K.: Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)CrossRefGoogle Scholar
  24. 24.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  25. 25.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefGoogle Scholar
  26. 26.
    Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Pierri, M., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5), 1641–1649 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  29. 29.
    Ponce, R.: Holder continuous solutions for Sobolev type differential equations. Math. Nachr. 287, 70–78 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, J.R., Feckan, M., Zhou, Y.: Controllability of Sobolev type fractional evolution systems. Dyn. Partial Differ. Equ. 11, 71–87 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 11, 4465–4475 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zeidler, E.: Nonlinear Functional Analysis and its Application II/A. Springer, New York (1990)CrossRefGoogle Scholar
  33. 33.
    Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, X., Chen, P.: Fractional evolution equation nonlocal problems with noncompact semigroups. Opuscula Math. 36, 123–137 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations