Advertisement

Optimal Fourth-Order Weerakoon–Fernando-Type Methods for Multiple Roots and Their Dynamics

  • Prem Bahadur Chand
  • Francisco I. ChicharroEmail author
  • Pankaj Jain
  • Kriti Sethi
Article

Abstract

In this paper, we present optimal fourth-order methods for finding multiple roots of non-linear equations, where the multiplicity is known in advance. These methods are based on the third-order method given by Weerakoon and Fernando for simple roots. The dynamical behavior of these methods around multiple roots is studied using basin of attraction in complex plane. We also present numerical examples to confirm our theoretical results.

Keywords

Non-linear equations Newton-type method multiple root complex dynamics fixed and critical points basin of attraction 

Mathematics Subject Classification

65H05 

Notes

References

  1. 1.
    Alexander, D.S.: A History of Complex Dynamics: From Schroder to Fatou and Julia. Friedr & Sohn Veriage, Wiesbaden (1994)CrossRefGoogle Scholar
  2. 2.
    Beardon, A.F.: Iteration of Rational Functions. Springer, New York (1991)CrossRefGoogle Scholar
  3. 3.
    Blanchard, P.: The dynamics of Newton’s method. Proc. Sympos. Appl. Math. 49, 139–154 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780153, 1–11 (2013)CrossRefGoogle Scholar
  5. 5.
    Chun, C., Neta, B.: A third order modification of Newton’s method for multiple roots. Appl. Math. Compt. 211, 474–479 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley publishing Company, New York (1989)zbMATHGoogle Scholar
  7. 7.
    Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iterations. J. Assoc. Comput. Mach. 21, 643–651 (1974)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, B., Zhou, X.: A new family of fourth order methods for multiple roots of non-linear equation. Nonlinear Anal. Model. Control 18, 143–152 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Petkovic, M.S., Neta, B., Petcovic, L.D., Dzflnic, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Waltham, MA (2013)Google Scholar
  10. 10.
    Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comp. 217, 878–881 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24, 37–46 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Vrscay, E.R., Gilbert, W.J.: Extraneous fixed points, basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions. Num. Math. 52, 1–16 (1988)CrossRefGoogle Scholar
  13. 13.
    Weerakoon, S., Fernando, T.G.I.: A Variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett 17, 87–93 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prem Bahadur Chand
    • 1
  • Francisco I. Chicharro
    • 2
    Email author
  • Pankaj Jain
    • 1
  • Kriti Sethi
    • 1
  1. 1.Department of MathematicsSouth Asian University, Akbar BhawanChanakyapuriIndia
  2. 2.Escuela Superior de Ingeniería y TecnologíaUniversidad Internacional de La RiojaLogroñoSpain

Personalised recommendations