Advertisement

On Fragmentable Compact Lines

  • Antonio AvilésEmail author
  • Gonzalo Martínez-Cervantes
  • Grzegorz Plebanek
  • Stevo Todorcevic
Article
  • 9 Downloads

Abstract

We prove that if a compact line is fragmentable, then it is a Radon–Nikodým compact space.

Keywords

Fragmentability Radon–Nikodým compact compact line 

Mathematics Subject Classification

46B26 06A5 54F05 

Notes

References

  1. 1.
    Argyros, S.: Weakly Lindelöf determined Banach spaces not containing \(\ell _1(\mathbb{N})\). arXiv:math/9210210 (1992) (preprint)
  2. 2.
    Avilés, A.: Linearly-ordered Radon–Nidkodým compact spaces. Topol. Appl. 154(2), 404–409 (2007)CrossRefGoogle Scholar
  3. 3.
    Avilés, A., Koszmider, P.: A continuous image of a Radon–Nikodým compact space which is not Radon–Nikodým. Duke Math. J. 162(12), 2285–2299 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fabian, M.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication, Wiley, New York (1997)Google Scholar
  5. 5.
    Ishiu, T., Moore, J.T.: Minimality of non \(\sigma \)-scattered orders. Fundam. Math. 205, 29–44 (2009)Google Scholar
  6. 6.
    Jech, T.: Set Theory, the Third Millennium Edition, Revised and Expanded. Springer, Berlin (2006)Google Scholar
  7. 7.
    Martínez-Cervantes, G.: Integration, geometry and topology in Banach spaces, Ph.D. thesis, University of Murcia (2017)Google Scholar
  8. 8.
    Martínez-Cervantes, G.: On weakly Radon–Nikodým compact spaces. Isr. J. Math. 221(1), 165–177 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Namioka, I.: Radon–Nikodým compact spaces and fragmentability. Mathematika 34(2), 258–281 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Namioka, I.: Fragmentability in Banach spaces: interactions of topologies. RACSAM 104(2), 283–308 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Orihuela, J., Schachermayer, W., Valdivia, M.: Every Radon–Nikodým Corson compact space is Eberlein. Stud. Math. 98, 157–174 (1991)CrossRefGoogle Scholar
  12. 12.
    Ribarska, N.K.: Internal characterization of fragmentable spaces. Mathematika 34(2), 243–257 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rudin, M.E.: Nikiel’s conjecture. Topol. Appl. 116(3), 305–311 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Smith, R.: A characterization of compact, fragmentable linear orders. arXiv:0811.2090 (2008) (preprint)
  15. 15.
    Talagrand, M.: Espaces de Banach faiblement \(\cal{K}\)-analytiques. Ann. Math. 110, 407–438 (1979)Google Scholar
  16. 16.
    Talagrand, M.: A new countably determined Banach space. Isr. J. Math. 47(1), 75–80 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de MurciaMurciaSpain
  2. 2.Instytut MatematycznyUniwersytet WrocławskiWrocławPoland
  3. 3.Department of MathematicsUniversity of TorontoTorontoCanada
  4. 4.Institut de Mathématiques de Jussieu, CNRS UMR 7586, Case 247Paris CedexFrance

Personalised recommendations