Advertisement

The Cesàro Operator on Duals of Smooth Sequence Spaces of Infinite Type

  • Ersin KızgutEmail author
Article
  • 7 Downloads

Abstract

The discrete Cesàro operator \(\mathsf {C}\) is investigated in strong duals of smooth sequence spaces of infinite type. Of main interest is its spectrum, which turns out to be distinctly different in the cases when the space is nuclear and when it is not.

Keywords

Cesàro operator duals of smooth sequence spaces generalized power series spaces spectrum (LB)-space 

Mathematics Subject Classification

47A10 47B37 46A45 46A04 

Notes

Acknowledgements

The author wishes to thank Prof. José Bonet for useful suggestions and discussions.

References

  1. 1.
    Albanese, A., Bonet, J., Ricker, W.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Albanese, A., Bonet, J., Ricker, W.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albanese, A., Bonet, J., Ricker, W.: Mean ergodicity and spectrum of the Cesàro operator on weighted \(c_0\) spaces. Positivity 20, 761–803 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Albanese, A., Bonet, J., Ricker, W.: The Cesàro operator in the Fréchet spaces \(\ell ^{p+}\) and \(L^{p-}\). Glasg. Math. J. 59(2), 273–287 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Albanese, A., Bonet, J., Ricker, W.: The Cesàro operator on duals of power series spaces of infinite type. J. Oper. Theory 79(2), 373–402 (2018)zbMATHGoogle Scholar
  6. 6.
    Bierstedt, K.D.: An introduction to locally convex inductive limits. In: Hogbe-Nlend, H. (ed.) Functional Analysis and its Applications, pp. 35–133. World Scientific, Singapore (1988)Google Scholar
  7. 7.
    Bierstedt, K.D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces. In: Barroso J.A. (ed.) Functional Analysis, Holomorphy and Approximation Theory, North-Holland Mathematics Studies, vol. 71, pp. 27–91. North-Holland, New York (1982)CrossRefGoogle Scholar
  8. 8.
    Carreras, P.P., Bonet, J.: Barrelled Locally Convex Spaces, North Holland Mathematics Studies, vol. 131. North-Holland, Amsterdam (1987)Google Scholar
  9. 9.
    Dragilev, M.M.: Bases in Köthe spaces (Russian). Izdatel’sto Rostovskogo Universiteta, Rostov-on-Don (1983)zbMATHGoogle Scholar
  10. 10.
    Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York (1965)zbMATHGoogle Scholar
  11. 11.
    Kocatepe, M.: On Dragilev spaces and the functor. Ext. Arch. Math. (Basel) 44, 438–445 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kocatepe, M.: Classification of Dragilev spaces of types-1 and 0. Math. Balkanica 2(2–3), 266–275 (1988)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kocatepe, M., Nurlu, Z.: Some special Köthe spaces. Advances in the Theory of Fréchet Spaces, Series C: Mathematical and Physical Sciences, vol. 287, pp. 269–296. Kluwer, Dordrecht (1989)CrossRefGoogle Scholar
  14. 14.
    Köthe, G.: Topological Vector Spaces I. Springer, Berlin (1969)zbMATHGoogle Scholar
  15. 15.
    Kızgut, E.: The Cesàro operator on smooth sequence spaces of finite type. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM (2018).  https://doi.org/10.1007/s13398-018-0578-9
  16. 16.
    Meise, R., Vogt, D.: Introduction to Functional Analysis. No. 2 in Oxford Graduate Texts in Mathematics. Clarendon Press, Oxford (1997)Google Scholar
  17. 17.
    Pietsch, A.: Nuclear Locally Convex Spaces, Ergebnisse der Mathematik und ihrer Grenzgebeite, vol. 66. Springer, Berlin (1972)CrossRefGoogle Scholar
  18. 18.
    Ramanujan, M.S., Terziog̃lu, T.: Subspaces of smooth sequence spaces. Studia Math. 65, 299–312 (1979)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985)CrossRefGoogle Scholar
  20. 20.
    Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958)zbMATHGoogle Scholar
  21. 21.
    Terziog̃lu, T.: Die diametral Dimension von lokalkonvexen Räumen. Collect. Math. 20, 49–99 (1969)MathSciNetGoogle Scholar
  22. 22.
    Terziog̃lu, T.: Smooth sequence spaces and associated nuclearity. Proc. Am. Math. Soc. 37(2), 497–504 (1973)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Terziog̃lu, T.: Stability of smooth sequence spaces. J. Reine Angew. Math. 276, 184–189 (1975)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y AplicadaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations