Advertisement

Uniform Convergence Method for a Delay Differential Problem with Layer Behaviour

  • Erkan CimenEmail author
  • Gabil M. Amiraliyev
Article
  • 19 Downloads

Abstract

Difference method on a piecewise uniform mesh of Shishkin type, for a singularly perturbed boundary-value problem for a linear second-order delay differential equation is examined. It is proved that it gives essentially a first-order parameter-uniform convergence in the discrete maximum norm. Furthermore, numerical results are presented in support of the theory.

Keywords

Singular perturbation boundary-value problem delay differential equation uniform convergence Shishkin mesh 

Mathematics Subject Classification

Primary 34K10 34K26 Secondary 65L11 65L12 65L20 

Notes

Acknowledgements

We thank the editor(s) and the referee(s) for their favourable comments.

References

  1. 1.
    Amiraliyev, G.M., Cimen, E.: Numerical method for a singularly perturbed convection-diffusion problem with delay. Appl. Math. Comput. 216(8), 2351–2359 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for a singularly perturbed pseudo-parabolic equations. Turk. J. Math. 19, 207–222 (1995)zbMATHGoogle Scholar
  3. 3.
    Andreev, V.B.: The Green function and a priori estimates of solutions of monotone three-point singularly perturbed finite-difference schemes. Differ. Equ. 37, 923–933 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cimen, E.: A priori estimates for solution of singularly perturbed boundary value problem with delay in convection term. J. Math. Anal. 8(1), 202–211 (2017)MathSciNetGoogle Scholar
  5. 5.
    Derstein, M.W., Gibbs, H.M., Hopf, F.A., Kaplan, D.L.: Bifurcation gap in a hybrid optical system. Phys. Rev. A 26(6), 3720–3722 (1982)CrossRefGoogle Scholar
  6. 6.
    Doolan, E.R., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)zbMATHGoogle Scholar
  7. 7.
    Du, B.: Stability analysis of periodic solution for a complex-valued neural networks with bounded and unbounded delays. Asian J. Control 20(2), 881–892 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Du, B., Lian, X., Cheng, X.: Partial differential equation modeling with Dirichlet boundary conditions on social networks. Bound. Value Probl. 2018(50), 1–11 (2018)MathSciNetGoogle Scholar
  9. 9.
    Du, B., Zhang, W., Yang, Q.: Robust state estimation for neutral-type neural networks with mixed time delays. J. Nonlinear Sci. Appl. 10(5), 2565–2578 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Els’gol’ts, E.L.: Qualitative methods in mathematical analysis. In: Translations of Mathematical Monographs. vol. 12. AMS, Providence (1964)Google Scholar
  11. 11.
    Erneux, E.: Applied Delay Differential Equations. Springer, Berlin (2009)zbMATHGoogle Scholar
  12. 12.
    Farrel, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman Hall/CRC, Boca Raton (2000)CrossRefGoogle Scholar
  13. 13.
    Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39(18), 5592–5597 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Glizer, V.Y.: Controllability conditions of linear singularly perturbed systems with small state and input delays. Math. Control Signals Syst. 28(1), 1–29 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kadalbajoo, M.K., Ramesh, V.P.: Numerical methods on Shishkin mesh for singularly perturbed delay differential equations with a grid adaptation strategy. Appl. Math. Comput. 188, 1816–1831 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Keane, A., Krauskopf, B., Postlethwaite, C.M.: Climate models with delay differential equations. Chaos 27(114309), 1–15 (2017)MathSciNetGoogle Scholar
  17. 17.
    Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential-difference equations. SIAM J. Appl. Math. 42, 502–531 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, L.B., Chen, Y.: Maximum norm a posteriori error estimates for a singularly perturbed differential difference equation with small delay. Appl. Math. Comput. 227(15), 801–810 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Longtin, A., Milton, J.: Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci. 90, 183–199 (1988)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRefGoogle Scholar
  21. 21.
    Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems, revised edition. World Scientific, Singapore (2012)CrossRefGoogle Scholar
  22. 22.
    Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)zbMATHGoogle Scholar
  23. 23.
    Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)CrossRefGoogle Scholar
  24. 24.
    Selvi, P.A., Ramanujam, N.: An iterative numerical method for singularly perturbed reaction-diffusion equations with negative shift. J. Comput. Appl. Math. 296, 10–23 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Stein, R.B.: Some models of neuronal variability. Biophys. J. 7, 37–68 (1967)CrossRefGoogle Scholar
  26. 26.
    Subburayan, V.: A parameter uniform numerical method for singularly perturbed delay problems with discontinuous convection coefficient. Arab J. Math. Sci. 22(2), 191–206 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Subburayan, V., Ramanujam, N.: Asymptotic initial value technique for singularly perturbed convection–diffusion delay problems with boundary and weak interior layers. Appl. Math. Lett. 25(12), 2272–2278 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zarin, H.: On discontinuous Galerkin finite element method for singularly perturbed delay differential equations. Appl. Math. Lett. 38(1), 27–32 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationVan Yuzuncu Yil UniversityVanTurkey
  2. 2.Department of Mathematics, Faculty of Arts and SciencesErzincan Binali Yıldırım UniversityErzincanTurkey

Personalised recommendations