Existence and Uniqueness of Solution for Abstract Differential Equations with State-Dependent Time Impulses

  • Katia A. G. AzevedoEmail author


We study the existence and uniqueness of mild and classical solutions for abstract impulsive differential equations with state-dependent time impulses and an example is presented.


Impulsive differential equation mild solution analytic semigroup 

Mathematics Subject Classification

34K30 34K45 35R12 47D06 



  1. 1.
    Aiello, W., Freedman, H.I., Wu, J.: Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52(3), 855–869 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bainov, D., Covachev, V.: Impulsive Differential Equations with a Small Parameter. Series on Advances in Mathematics for Applied Sciences, vol. 24. World Scientific Publishing Co., River Edge (1994)zbMATHGoogle Scholar
  3. 3.
    Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and Its Applications, vol. 2. Hindawi Publishing Corporation, New Delhi (2006)CrossRefGoogle Scholar
  4. 4.
    Driver, R.D.: A functional-differential system of neutral type arising in a two-body problem of classical electrodynamics. In: LaSalle, J., Lefschtz, S. (eds.) International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, pp. 474–484. Academic Press, New York (1963)CrossRefGoogle Scholar
  5. 5.
    Driver, R.D.: A neutral system with state-dependent delay. J. Differ. Equ. 54, 73–86 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hakl, R., Pinto, M., Tkachenko, V., Trofimchuk, S.: Almost periodic evolution systems with impulse action at state-dependent moments. J. Math. Anal. Appl. 446(1), 1030–1045 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Functional Differential Equations with State-Dependent Delays: Theory and Applications. Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, pp. 435–545. Amsterdam (2006)Google Scholar
  8. 8.
    Hernández, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 7(4), 510–519 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hernández, E., Pierri, M., Goncalves, G.: Existence results for an impulsive abstract partial differential equation with state-dependent delay. Comput. Math. Appl. 52(3–4), 411–420 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hernandez, E., Pierri, M., Wu, J.: \({{\bf C}}^{1+\alpha }\)-strict solutions and wellposedness of abstract differential equations with state dependent delay. J. Differ. Equ. 261(12), 6856–6882 (2016)CrossRefGoogle Scholar
  11. 11.
    Krisztin, T., Rezounenkob, A.: Parabolic partial differential equations with discrete state-dependent delay: classical solutions and solution manifold. J. Differ. Equ. 260(5), 4454–4472 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kosovalic, N., Chen, Y., Wu, J.: Algebraic-delay differential systems: \( C^{0}\)-extendable submanifolds and linearization. Trans. Am. Math. Soc. 369(5), 3387–3419 (2017)CrossRefGoogle Scholar
  13. 13.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics, vol. 6. World Scientific Publishing Co., Teaneck (1989)CrossRefGoogle Scholar
  14. 14.
    Li, X., Wu, J.: Stability of nonlinear differential systems with state-dependent delayed impulses. Autom. J. IFAC 64, 63–69 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, PNLDE, vol. 16. Birkhäauser, Basel (1995)CrossRefGoogle Scholar
  16. 16.
    Lv, Y., Rong, Y., Yongzhen, P.: Smoothness of semiflows for parabolic partial differential equations with state-dependent delay. J. Differ. Equ. 260, 6201–6231 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York-Berlin (1983)CrossRefGoogle Scholar
  18. 18.
    Rezounenko, A.V.: A condition on delay for differential equations with discrete state-dependent delay. J. Math. Anal. Appl. 385(1), 506–516 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rezounenko, A.V., Wu, J.: A non-local PDE model for population dynamics with state-selective delay: local theory and global attractors. J. Comput. Appl. Math. 190(1–2), 99–113 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Computação e Matemática Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PrêtoBrazil

Personalised recommendations