Advertisement

An Efficient Approximation to Numerical Solutions for the Kawahara Equation Via Modified Cubic B-Spline Differential Quadrature Method

  • Ali BaşhanEmail author
Article
  • 15 Downloads

Abstract

The main purpose of this work is to obtain the numerical solutions for the Kawahara equation via the Crank–Nicolson–Differential Quadrature Method based on modified cubic B-splines (MCBC-DQM). First, the Kawahara equation has been discretized using Crank–Nicolson scheme. Then, Rubin and Graves linearization technique has been utilized and differential quadrature method has been applied to obtain algebraic equation system. Four different test problems, namely single solitary wave, interaction of two solitary waves, interaction of three solitary waves, and wave generation, have been solved. Next, to be able to test the efficiency and accuracy of the newly applied method, the error norms \( L _{2}\) and \( L _{\infty }\) as well as the three lowest invariants \( I _{1}\), \( I _{2}\), and \( I _{3}\) have been computed. Besides those, the relative changes of invariants have been reported. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. The comparison of present results with earlier works showed that the newly method may be provide significant benefit in case of numerical solutions of the other nonlinear differential equations.

Keywords

Partial differential equations differential quadrature method modified cubic B-splines Kawahara equation 

Mathematics Subject Classification

65D32 65M99 35G25 65D07 15A30 

Notes

References

  1. 1.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering form. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  2. 2.
    Ablowitz, M.J., Segur, H.: Solitons and inverse scattering transformation. SIAM, Philadelphia (1981)CrossRefGoogle Scholar
  3. 3.
    Rashidi, M.M., Domairry, G., Dinarvand, S.: Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 708717 (2009)Google Scholar
  4. 4.
    Rashidi, M.M., Mohimanian Pour, S.A., Hayat, T., Obaidat, S.: Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput. Fluids 54, 19 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rashidi, M.M., Freidoonimehr, N., Hosseini, A., Anwar Beg, O., Hung, T.-K.: Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49, 469482 (2014)CrossRefGoogle Scholar
  6. 6.
    Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefGoogle Scholar
  7. 7.
    Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972)CrossRefGoogle Scholar
  8. 8.
    Yamamoto, Y., Takizawa, E.I.: On a solution on nonlinear time evolution equation of fifth order. J. Phys. Soc. Jpn. 50, 1421–1422 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boyd, J.P.: Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation. Phys. D 48(2), 129–146 (1991)CrossRefGoogle Scholar
  10. 10.
    Pomeau, Y., Ramani, A., Grammaticos, B.: Structural stability of the Korteweg-de Vries solitons under a singular perturbation. Phys. D 31, 127–134 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Djidjeli, K., Price, W.G., Twizell, E.H., Wand, Y.: Numerical methods for the solution of the third- and fifth-order dispersive Kortewege-de Vries equations. J. Comput. Appl. Math. 58, 307–336 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaya, D.: An explicit and numerical solutions of some fifth-order KdV equation by decomposition method. Appl. Math. Comput. 144, 353–363 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Berloff, N.G., Howard, L.N.: Solitary and periodic solutions to nonlinear nonintegrable equations. Stud. Appl. Math. 99, 1–24 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bridges, T., Derks, G.: Linear instability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J. Math. Anal. 33(6), 1356–1378 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Karpman, V.I., Vanden-Broeck, J.-M.: Stationary solitons and stabilization of the collapse described by KdV-type equations with high nonlinearities and dispersion. Phys. Lett. A 200, 423–428 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wazwaz, A.: Compacton solutions of the Kawahara-type nonlinear dispersive equation. Appl. Math. Comput. 145, 133–150 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Coclite, G.M., di Ruvo, L.: A singular limit problem for conservation laws related to the Kawahara equation. Bull. Sci. Math. 140, 303–338 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Coclite, G.M., di Ruvo, L.: A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Netw. Heterog. Media. 11(2), 281–300 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Coclite, G.M., di Ruvo, L.: Convergence results related to the modified Kawahara equation. Boll. Unione Mat. Ital. 9(8), 265–286 (2016).  https://doi.org/10.1007/s40574-015-0043-z MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Koley, U.: Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation. Cent. Eur. J. Math. 10(1), 173–187 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Koley, U.: Finite difference schemes for the Korteweg-de Vries-Kawahara equation. Int. J. Numer. Anal. Model. 13(3), 344–367 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Yusufoğlu, E., Bekir, A.: Symbolic computation and new families of exact travelling solutions for the Kawahara and modified Kawahara equations. Comput. Math. Appl. 55, 1113–1121 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wazwaz, A.: New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations. Appl. Math. Comput. 182, 1642–1650 (2006)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Yusufoğlu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method. Chaos Solitons Fractals 37, 1193–1197 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Abbasbandy, S.: Homotopy analysis method for the Kawahara equation. Nonlinear Anal Real World Appl 11, 307–312 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Parkes, E.J., Duffya, B.R., Abbott, P.C.: The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A 295, 280–286 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kaya, D., Al-Khaled, K.: A numerical comparison of a Kawahara equation. Phys. Lett. A 363, 433–439 (2007)CrossRefGoogle Scholar
  29. 29.
    Karakoç, B.G., Zeybek, H., Ak, T.: Numerical solutions of the Kawahara equation by the septic B-spline collocation method. Stat. Optim. Inf. Comput. 2, 211–221 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Korkmaz, A., Dağ, I.: Crank-Nicolson-Differential quadrature algorithms for the Kawahara equation. Chaos Solitons Fractals 42, 65–73 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bibi, N., Tirmizi, S.I.A., Haq, S.: Meshless method of lines for numerical solution of Kawahara type equations. Appl. Math. 2, 608–618 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lahiji, M.A., Abdul Aziz, Z.: Numerical solution for Kawahara equation by using spectral methods. IERI Procedia 10, 259–265 (2014)CrossRefGoogle Scholar
  33. 33.
    Shu, C.: Differential quadrature and its application in engineering. Springer, London (2000)CrossRefGoogle Scholar
  34. 34.
    Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a tecnique for the rapid solution of nonlinear differential equations. J. Comput. Phys. 10, 40–52 (1972)CrossRefGoogle Scholar
  35. 35.
    Shu, C., Wu, Y.L.: Integrated radial basis functions-based differential quadrature method and its performance. Int. J. Numer. Meth. Fluids 53, 969–984 (2007)CrossRefGoogle Scholar
  36. 36.
    Striz, A.G., Wang, X., Bert, C.W.: Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech. 111, 85–94 (1995)CrossRefGoogle Scholar
  37. 37.
    Korkmaz, A., Dağ, I.: Shock wave simulations using Sinc differential quadrature method. Int. J. Comput. Aided Eng. Softw. 28(6), 654–674 (2011)CrossRefGoogle Scholar
  38. 38.
    Karakoc, S.B.G., Başhan, A., Geyikli, T.: Two Different Methods for Numerical Solution of the Modified Burgers’ Equation, 2014, Article ID 780269, 13 pages (2014)  https://doi.org/10.1155/2014/780269
  39. 39.
    Başhan, A., Karakoç, S.B.G., Geyikli, T.: Approximation of the KdVB equation by the quintic B-spline differential quadrature method. Kuwait J. Sci. 42(2), 67–92 (2015)MathSciNetGoogle Scholar
  40. 40.
    Başhan, A., Yağmurlu, N.M., Uçar, Y., Esen, A.: An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method. Chaos Solitons Fractals 100, 45–56 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Başhan, A., Uçar, Y., Yağmurlu, N.M., Esen, A.: Numerical solution of the complex modified Korteweg-de Vries equation by DQM, J. Phys. Conf. Ser. 766, 0120281–0120286 (2016).  https://doi.org/10.1088/1742-6596/766/1/012028 CrossRefGoogle Scholar
  42. 42.
    Başhan, A.: An effective application of differential quadrature method based on modified cubic B-splines to numerical solutions of KdV equation. Turk. J. Math. 42, 373–394 (2018).  https://doi.org/10.3906/mat-1609-69 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Prenter, P.M.: Splines and Variational Methods. John Wiley, New York (1975)zbMATHGoogle Scholar
  44. 44.
    Mittal, R.C., Jain, R.K.: Numerical solutions of Nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comp. 218, 7839–7855 (2012)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Rubin, S.G., Graves, R.A.: A cubic spline approximation for problems in fluid mechanics, NASA technical report, NASA TR R-436 (1975)Google Scholar
  46. 46.
    Malik, R.P.: On fifth order KdV-type equation, Bogoliubov laboratory of theoretical physics, JINR, 141980 Dubna, Moscow Region, Russia 1-12 (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsZonguldak Bulent Ecevit University Faculty of Science and ArtZonguldakTurkey

Personalised recommendations