Advertisement

The Bénard Problem for Slightly Compressible Materials: Existence and Linear Instability

  • Andrea CorliEmail author
  • Arianna Passerini
Article
  • 24 Downloads

Abstract

We study a generalization of the Oberbeck–Boussinesq system, which consists in a buoyancy term where the density depends also on the pressure. A new pressure equation is introduced, which is deduced from the divergence-free condition on the velocity; such an equation cannot be decoupled from the system and is studied under Robin’s boundary conditions. Then, the existence of regular periodic solutions is proved for the full system. In Bénard’s problem, the two-dimensional linear instability of the solution depends on a dimensionless parameter that is proportional to the compressibility factor: the related critical Rayleigh number decreases as it increases.

Keywords

Incompressible fluids Oberbeck–Boussinesq approximation Bénard problem instability 

Mathematics Subject Classification

76R10 76D07 76E06 

Notes

Acknowledgements

The first author is a member of “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the “Istituto Nazionale di Alta Matematica” (INdAM) and acknowledges support from this institution.

References

  1. 1.
    Boussinesq, J.: Théorie Analytique de la Chaleur. Gauthier-Villars, Paris (1903)Google Scholar
  2. 2.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)zbMATHGoogle Scholar
  3. 3.
    Galdi, G.P.: Nonlinear stability of the magnetic Bénard problem via a generalized energy method. Arch. Ration. Mech. Anal. 87(2), 167–186 (1985)CrossRefGoogle Scholar
  4. 4.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I and II. Springer, New York (1994)Google Scholar
  5. 5.
    Galdi, G.P., Padula, M.: A new approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110(3), 187–286 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry, and nonlinear stability. Arch. Ration. Mech. Anal. 89(3), 211–228 (1985)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Galdi, G.P., Straughan, B.: A nonlinear analysis of the stabilizing effect of rotation in the Bénard problem. Proc. R. Soc. Lond. Ser. A 402(1823), 257–283 (1985)CrossRefGoogle Scholar
  8. 8.
    Getling, A.V.: Rayleigh–Bénard Convection. World Scientific Publishing Co., Inc, River Edge (1998)CrossRefGoogle Scholar
  9. 9.
    Gouin, H., Muracchini, A., Ruggeri, T.: On the Müller paradox for thermal-incompressible media. Contin. Mech. Thermodyn. 24(4–6), 505–513 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gouin, H., Ruggeri, T.: A consistent thermodynamical model of incompressible media as limit case of quasi-thermal-incompressible materials. Int. J. Non-linear Mech. 47, 688–693 (2012)CrossRefGoogle Scholar
  11. 11.
    Kagei, Y., Růžička, M.: The Oberbeck-Boussinesq approximation as a constitutive limit. Contin. Mech. Thermodyn. 28(5), 1411–1419 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Manacorda, T.: Onde elementari nella termoelasticità di solidi incomprimibili. Atti Acc. Sci. Torino 10, 1139–1150 (1967)zbMATHGoogle Scholar
  13. 13.
    Oberbeck, A.: Über die Wärmeleitung der Flus̈sigkeiten bei der Beruc̈ksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 243, 271–292 (1879)CrossRefGoogle Scholar
  14. 14.
    Oberbeck, A.: Über die Bewegungserscheinungen der Atmosphar̈e. Sitz. Ber. K. Preuss. Akad. Wiss. 14(383–395), 1129–1138 (1888)zbMATHGoogle Scholar
  15. 15.
    Passerini, A., Ruggeri, T.: The Bénard problem for quasi-thermal-incompressible materials: a linear analysis. Int. J. Non-linear Mech. 67, 178–185 (2014)CrossRefGoogle Scholar
  16. 16.
    Passerini, A., Růžička, M., Thäter, G.: Natural convection between two horizontal coaxial cylinders. ZAMM Z. Angew. Math. Mech. 89(5), 399–413 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sani, R.L., Shen, J., Pironneau, O., Gresho, P.M.: Pressure boundary condition for the time-dependent incompressible Navier–Stokes equations. Int J. Numer. Methods Fluids 50(6), 673–682 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Serre, D.: Matrices, 2nd edn. Springer, New York (2010)CrossRefGoogle Scholar
  19. 19.
    Teerstra, P., Yovanovich, M.: Comprehensive review of natural convection in horizontal circular annuli. Nonlinear Anal. Real World Appl. 10(2), 1139–1150 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of FerraraFerraraItaly

Personalised recommendations