Advertisement

Oscillations of Deviating Difference Equations Using an Iterative Method

  • George E. Chatzarakis
  • Irena Jadlovská
Article
  • 10 Downloads

Abstract

Oscillation criteria generalizing a series of earlier results are established, for deviating difference equations with non-monotone arguments, based on an iterative method. The results and the improvement achieved over the other known criteria is illustrated by an example, numerically solved in MATLAB.

Keywords

Difference equations non-monotone argument retarded argument advanced argument oscillation Grönwall inequality 

Mathematics Subject Classification

39A10 39A21 

Notes

Acknowledgements

The authors would like to thank the referees for the constructive remarks which greatly improved the paper.

Funding

The work on this research has been supported by the Grant project KEGA 035TUKE-4/2017.

References

  1. 1.
    Asteris, P.G., Chatzarakis, G.E.: New oscillation tests for difference equations with non-monotone arguments. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 24(4), 287–302 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Braverman, E., Chatzarakis, G.E., Stavroulakis, I.P.: Iterative oscillation tests for difference equations with several non-monotone arguments. J. Diff. Equ. Appl. 21(9), 854–874 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218, 3880–3887 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chatzarakis, G. E., Jadlovská, I.: Oscillations in deviating difference equations using an iterative technique. J. Inequal. Appl., Paper No. 173, p 24 (2017)Google Scholar
  5. 5.
    Chatzarakis, G.E., Jadlovská, I.: Improved iterative oscillation tests for first-order deviating difference equations. Int. J. Diff. Equ. 12(2), 185–210 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Oscillation criteria of first order linear difference equations with delay argument. Nonlinear Anal. 68, 994–1005 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Optimal oscillation criteria for first order difference equations with delay argument. Pacific J. Math. 235, 15–33 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chatzarakis, G.E., Philos, ChG, Stavroulakis, I.P.: Oscillations of first order linear difference equations with general delay argument. Portugal. Math. 66, 513–533 (2009)CrossRefGoogle Scholar
  9. 9.
    Chatzarakis, G.E., Purnaras, I.K., Stavroulakis, I.P.: Oscillations of deviating difference equations with non-monotone arguments. J. Diff. Equ. Appl. 23(8), 1354–1377 (2017)CrossRefGoogle Scholar
  10. 10.
    Chatzarakis G. E., Shaikhet, L.: Oscillation criteria for difference equations with non-monotone arguments. Adv. Diff. Equ., Paper No. 62, p 16 (2017)Google Scholar
  11. 11.
    Chatzarakis, G.E., Stavroulakis, I.P.: Oscillations of difference equations with general advanced argument. Cent. Eur. J. Math. 10, 807–823 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, M.-P., Yu, J. S.: Oscillations of delay difference equations with variable coefficients. In: Proceedings of the First International Conference on Difference Equations, Gordon and Breach, London, pp. 105–114 (1994)Google Scholar
  13. 13.
    Erbe, L.H., Zhang, B.G.: Oscillation of discrete analogues of delay equations. Diff. Integr. Equ. 2, 300–309 (1989)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Györi, I., Ladas, G.: Linearized oscillations for equations with piecewise constant arguments. Diff. Integr. Equ. 2, 123–131 (1989)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kelley, W.G., Peterson, A.C.: Difference Equations: An Introduction with Applications. Academic press, Cambridge (2001)zbMATHGoogle Scholar
  16. 16.
    Ladas, G., Philos, ChG, Sficas, Y.G.: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simul. 2, 101–111 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ladas, G.: Explicit conditions for the oscillation of difference equations. J. Math. Anal. Appl. 153, 276–287 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, X., Zhu, D.: Oscillation of advanced difference equations with variable coefficients. Ann. Diff. Equ. 18, 254–263 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Stavroulakis, I.P.: Oscillation criteria for delay and difference equations with non-monotone arguments. Appl. Math. Comput. 226, 661–672 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tang, X.H., Yu, J.S.: Oscillation of delay difference equations. Comput. Math. Appl. 37, 11–20 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tang, X.H., Zhang, R.Y.: New oscillation criteria for delay difference equations. Comput. Math. Appl. 42, 1319–1330 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yan, W., Meng, Q., Yan, J.: Oscillation criteria for difference equation of variable delays. DCDIS Proc. 3, 641–647 (2005)Google Scholar
  23. 23.
    Zhang, B.G., Tian, C.J.: Nonexistence and existence of positive solutions for difference equations with unbounded delay. Comput. Math. Appl. 36, 1–8 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic Engineering EducatorsSchool of Pedagogical and Technological Education (ASPETE)AthensGreece
  2. 2.Department of Mathematics and Theoretical Informatics Faculty of Electrical Engineering and InformaticsTechnical University of KošiceKošiceSlovakia

Personalised recommendations