Advertisement

On a Two-Step Kurchatov-Type Method in Banach Space

  • Ioannis K. Argyros
  • Santhosh GeorgeEmail author
Article
  • 18 Downloads

Abstract

We present the semi-local convergence analysis of a two-step Kurchatov-type method to solve equations involving Banach space valued operators. The analysis is based on our ideas of recurrent functions and restricted convergence region. The study is completed using numerical examples.

Keywords

Kurchatov method Semi-local convergence Fréchet derivative Banach space 

Mathematics Subject Classification

65H10 47H17 49M15 65D10 65G99 

Notes

References

  1. 1.
    Argyros, I.K.: Computational Theory of Iterative Methods. Series: Studies in Computational Mathematics, 15, Editors: C.K.Chui and L. Wuytack. Elsevier, New York (2007)Google Scholar
  2. 2.
    Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, New York (2008)zbMATHGoogle Scholar
  3. 3.
    Argyros, I.K., Magreñañ, A.A.: Iterative Methods and Their Dynamics with Applications: A Contemporary Study. CRC Press, Cambridge (2017)CrossRefGoogle Scholar
  4. 4.
    Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Stable high order iterative methods for solving nonlinear models. Appl. Math. Comput. 303(15), 70–88 (2017)MathSciNetGoogle Scholar
  5. 5.
    Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11504 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Madru, K., Jayaraman, J.: Some higher order Newton-like methods for solving system of nonlinear equations and its applications. Int. J. Appl. Comput. Math. 3, 2213–2230 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41(2), 227–236 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A.: Avoiding the computation of the second-Fréchet derivative in the convex acceleration of Newton’s method. J. Comput. Appl. Math. 96, 1–12 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ezquerro, J.A., Hernández, M.A.: Multipoint super-Halley type approximation algorithms in Banach spaces. Numer. Funct. Anal. Optim. 21(7&8), 845–858 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ezquerro, J.A., Hernández, M.A.: A modification of the super-Halley method under mild differentiability condition. J. Comput. Appl. Math. 114, 405–409 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grau-Sanchez, M., Grau, A., Noguera, M.: Ostrowski type methods for solving systems of nonlinear equations. Appl. Math. Comput. 218, 2377–2385 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gutiérrez, J.M., Magren̄án, A.A., Romero, N.: On the semi-local convergence of Newton–Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput. 221, 79–88 (2013)MathSciNetGoogle Scholar
  13. 13.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)zbMATHGoogle Scholar
  14. 14.
    Magreńãn, A.A.: Different anomalies in a Jarratt family of iterative root finding methods. Appl. Math. Comput. 233, 29–38 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Magreńãn, A.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 29–38 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Potra, F.A., Pták, V.: Nondiscrete Induction and Iterative Processes. In: Research Notes in Mathematics, Vol. 103, Pitman, Boston (1984)Google Scholar
  17. 17.
    Shakhno, S.M.: On a Kurchatov’s method of linear interpolation for solving nonlinear equations. PAMM Proc. Appl. Math. Mech. 4, 650–651 (2004)CrossRefGoogle Scholar
  18. 18.
    Shakhno, S.M.: On the difference method with quadratic convergence for solving nonlinear equations. Matem. Stud 26, 105–110 (2006). (In Ukrainian)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sharma, J.R., Arora, H.: On efficient weighted-Newton methods for solving system of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sharma, J.R., Arora, H.: Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sharma, J.R., Gupta, P.: An efficient fifth order method for solving systems of nonlinear equations. Comput. Math. Appl. 67, 591–601 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sharma, J.R., Guha, R.K., Sharma, R.: An efficient fourth-order weighted Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesCameron UniversityLawtonUSA
  2. 2.Department of Mathematical and Computational SciencesNational Institute of Technology KarnatakaMangaloreIndia

Personalised recommendations