Hardy-Type Tauberian Conditions on Time Scales
Article
First Online:
- 59 Downloads
Abstract
Hardy’s well-known Tauberian theorem for number sequences states that if a sequence \(x=\left( x_{k}\right) \) satisfies \(\lim Cx=L\) and \(\Delta x_{k}:=x_{k+1}-x_{k}=O\left( 1/k\right) \), then \(\lim x=L\), where Cx denotes the Cesàro mean (arithmetic mean) of x. In this study, we extend this result to the theory of time scales. We also discuss the theory on some special time scales.
Keywords
Tauberian theorems Cesàro summability Statistical convergence Time scalesMathematics Subject Classification
40E05 40G15 26E70References
- 1.Aktuglu, H., Bekar, S.: \(q\)-Cesáro matrix and \(q\)-statistical convergence. J. Comput. Appl. Math. 235, 4717–4723 (2011)MathSciNetCrossRefGoogle Scholar
- 2.Aslim, G., Guseinov, G.S.: Weak semirings \(\omega \)-semirings, and measures. Bull. Allahabad Math. Soc. 14, 1–20 (1999)MathSciNetzbMATHGoogle Scholar
- 3.Boos, J.: Classical and Modern Methods in Summability. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
- 4.Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser Boston, Inc., Boston (2001)CrossRefGoogle Scholar
- 5.Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)MathSciNetCrossRefGoogle Scholar
- 6.Fekete, Á., Móricz, F.: A characterization of the existence of statistical limit of real-valued measurable functions. Acta Math. Hung. 114, 235–246 (2007)MathSciNetCrossRefGoogle Scholar
- 7.Fridy, J.A.: On statistical convergence. Analysis 5, 301–313 (1985)MathSciNetCrossRefGoogle Scholar
- 8.Fridy, J.A., Khan, M.K.: Statistical extensions of some classical Tauberian theorems. Proc. Am. Math. Soc. 128, 2347–2355 (2000)MathSciNetCrossRefGoogle Scholar
- 9.Guseinov, G.S.: Integration on time scales. J. Math. Anal. Appl. 285, 107–127 (2003)MathSciNetCrossRefGoogle Scholar
- 10.Hardy, G.H.: Divergent Series. Clarendon Press, Oxford (1949)zbMATHGoogle Scholar
- 11.Móricz, F.: Statistical limits of measurable functions. Analysis (Munich) 24, 1–18 (2004)MathSciNetzbMATHGoogle Scholar
- 12.Turan, C., Duman, O.: Statistical convergence on timescales and its characterizations. In: Advances in Applied Mathematics and Approximation Theory. Springer Proceedings in Mathematics and Statistics, vol. 41, pp. 57–71. Springer, New York (2013)CrossRefGoogle Scholar
- 13.Turan, C., Duman, O.: Convergence methods on time scales. AIP Conf. Proc. 1558, 1120–1123 (2013)CrossRefGoogle Scholar
- 14.Turan, C., Duman, O.: Fundamental properties of statistical convergence and lacunary statistical convergence on time scales. Filomat 31(14), 4455–4467 (2017)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2018