Advertisement

Conditionally Negative Definite Functions

  • Yogesh Kapil
  • Rajinder Pal
  • Anchal Aggarwal
  • Mandeep Singh
Article

Abstract

Let \(f:[0,\infty )\rightarrow [0,\infty )\) be an operator monotone function and \(g: \mathbb {R}\rightarrow [0,\infty )\) be a conditionally negative definite(in short cnd) function. We obtain that \(f\circ g:\mathbb {R}\rightarrow [0,\infty )\) is also conditionally negative definite. This generalizes and subsumes several existing results. A versatile direct connection between cnd functions and functions having Weierstrass factorization is established and consequently a reasonable account for cnd functions is presented.

Keywords

Conditionally negative definite Positive definite Infinitely divisible Operator monotone 

Mathematics Subject Classification

Primary 42A82 42B99 

Notes

Acknowledgements

The authors are grateful to a referee for the valuable comments and suggestions in preparing the final version.

References

  1. 1.
    Bapat, R.B., Raghavan, T.E.S.: Nonnegative matrices and applications. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  2. 2.
    Berg, C.: Stieltjes-Pick-Bernstein–Schoenberg and their connection to complete monotonicity. In: Mateu, J., Porcu, E. (eds.) Positive definite functions: from Schoenberg to space-time challenges. Dept. of Mathematics, University Jaume. Castell on de la Plana, Plana (2008)Google Scholar
  3. 3.
    Bhatia, R.: Matrix analysis. Springer-Verlag, New York (1997)CrossRefGoogle Scholar
  4. 4.
    Bhatia, R.: Positive definite matrices. Princeton University Press, New Jersey (2007)zbMATHGoogle Scholar
  5. 5.
    Bhatia, R., Jain, T.: Inertia of the matrix \((p_i+p_j)^r\). J. Spectr. Theory 5, 71–87 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bhatia, R., Jain, T.: On some positive definite functions. Positivity 19, 903–910 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bhatia, R., Jain, T.: Mean matrices and conditional negativity. Electron. J. Linear Algebra 29, 206–222 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bhatia, R., Sano, T.: Loewner matrices and operator convexity. Math. Ann. 344, 703–716 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dyn, N., Goodman, T., Micchelli, C.A.: Positive powers of certain conditionally negative definite matrices. Indag. Math (Proc.) 89(2), 163–178 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kosaki, H.: On infinite divisibility of positive definite functions arising from operator means. J. Funct. Anal. 254, 84–108 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kosaki, H.: Positive definiteness of functions with applications to operator norm inequalities. Memoirs Amer. Math. Soc, Providence (2011)zbMATHGoogle Scholar
  12. 12.
    Schilling, R., Song, R., Vondracek, Z.: Bernstein Functions: Thoery and Applications. De Gruyter, Berlin (2010)zbMATHGoogle Scholar
  13. 13.
    Schoenberg, I.J.: Remarks to Maurice Frechet’s article “sur la definition axiomatique d’une classe d’espace distances vectoriellemment applicable sur l’espace de Hilbert”. Ann. of Math. (2) 36, 724–732 (1935)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsSant Longowal Institute of Engineering and TechnologyLongowalIndia

Personalised recommendations