Advertisement

B.-Y. Chen’s Inequality for Bi-warped Products and Its Applications in Kenmotsu manifolds

  • Siraj Uddin
  • Falleh R. Al-Solamy
  • Mohammad Hasan Shahid
  • Amani Saloom
Article
  • 35 Downloads

Abstract

In this paper, we establish a sharp inequality for the squared norm of the second fundamental form of bi-warped product submanifolds of Kenmotsu manifolds. The equality case is also considered. We also provide a non-trivial example and some applications of derived inequality.

Keywords

Warped products Bi-warped products Multiply warped products Invariant Anti-invariant Slant submanifolds Kenmotsu manifolds 

Mathematics Subject Classification

53C15 53C40 53C42 53B25 

References

  1. 1.
    Al-Solamy, F.R., Naghi, M.F., Uddin, S.: Geometry of warped product pseudo-slant submanifolds of Kenmotsu manifolds. Quaestiones Math. (2018).  https://doi.org/10.2989/16073606.2018.1452800
  2. 2.
    Arslan, K., Ezentas, R., Mihai, I., Murathan, C.: Contact CR-warped product submanifolds in Kenmotsu space forms. J. Korean Math. Soc. 42, 1101–1110 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atceken, M.: Warped product semi-slant submanifolds in Kenmotsu manifolds. Turk. J. Math. 36, 319–330 (2012)Google Scholar
  4. 4.
    Baker, J.P.: Twice warped products M.Sc. Thesis. Univesity of Missouri-Columbia, Columbia, MO (1997)Google Scholar
  5. 5.
    Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Amer. Math. Soc. 145, 1–49 (1969)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blair, D.E.: Contact manifolds in Riemannian geometry, Lecture Notesin Mathematics, vol. 509. Springer, New York (1976)CrossRefGoogle Scholar
  7. 7.
    Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 42, 125–138 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, B.-Y.: Geometry of slant submanifolds. Katholieke Universiteit Leuven, Leuven (1990)zbMATHGoogle Scholar
  10. 10.
    Chen, B.-Y.: Geometry of warped product CR-submanifolds in Kaehler manifolds. Monatsh. Math. 133, 177–195 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, B.-Y.: Geometry of warped product CR-submanifolds in Kaehler manifolds II. Monatsh. Math. 134, 103–119 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, B.-Y.: Pseudo-Riemannian geometry, \(\delta \)-invariants and applications. World Scientific, Hackensack (2011)CrossRefGoogle Scholar
  13. 13.
    Chen, B.-Y.: Geometry of warped product submanifolds: a survey. J. Adv. Math. Stud. 6(2), 1–43 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chen, B.-Y.: Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack (2017)CrossRefGoogle Scholar
  15. 15.
    Chen, B.-Y., Dillen, F.: Optimal inequalities for multiply warped product submanifolds. Int. Electron. J. Geom. 1(1), 1–11 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Chen, B.-Y., Uddin, S.: Warped product pointwise bi-slant submanifolds of Kaehler manifolds. Publ. Math. Debrecen 92(1–2), 183–199 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, B.-Y.: Geometry of warped product and CR-warped product submanifolds in Kaehler manifolds: modified version, arXiv:1806.11102v1 [math.DG]
  18. 18.
    Dobarro, F., Unal, B.: Curvature of multiply warped products. J. Geom. Phys. 55, 75–106 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hasegawa, I., Mihai, I.: Contact CR-warped product submanifolds in Sasakian manifolds. Geom. Dedicata 102, 143–150 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24, 93–103 (1972)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Matsumoto, K., Mihai, I.: Warped product submanifolds in quaternion space forms. Acta Univ. Apulensis Math. Inform. 10, 31–38 (2005)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Matsumoto, K., Mihai, I.: Warped product submanifolds in Sasakian space forms. SUT J. Math. 38(2), 135–144 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Murathan, C., Arslan, K., Ezentas, R., Mihai, I.: Warped product submanifolds in Kenmotsu space forms. Taiwanese J. Math. 10(6), 1431–1441 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mustafa, A., De, A., Uddin, S.: Characterization of warped product submanifolds in Kenmotsu manifolds. Balkan J. Geom. Appl. 20, 86–97 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Nolker, S.: Isometric immersions of warped products. Differ. Geom. Appl. 6(1), 1–30 (1996)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Olteanu, A.: Multiply warped product submanifolds in Kenmotsu space forms. Bull. Inst. Math. Acad. Sinica 5(2), 201–214 (2010). (New Series)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Tastan, H.M.: Biwarped product submanifolds of a Kaehler manifold, arXiv:1611.08469 [math.DG]
  28. 28.
    Uddin, S., Khan, V.A., Khan, K.A.: Warped product submanifolds of a Kenmotsu manifold. Turk. J. Math. 36, 319–330 (2012)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Uddin, S.: Geometry of warped product semi-slant submanifolds of Kenmotsu manifolds. Bull. Math. Sci. (2017).  https://doi.org/10.1007/s13373-017-0106-9 CrossRefzbMATHGoogle Scholar
  30. 30.
    Uddin, S., Chen, B.-Y., Al-Solamy, F.R.: Warped product bi-slant immersions in Kaehler manifolds. Mediterr. J. Math. 14, 95 (2017).  https://doi.org/10.1007/s00009-017-0896-8 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Uddin, S., Al-Solamy, F.R.: Warped product pseudo-slant immersions in Sasakian manifolds. Publ. Math. Debrecen 91(3–4), 331–348 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Uddin, S., Naghi, M.F., Al-Solamy, F.R.: Another class of warped product submanifoldsof Kenmotsu manifolds. RACSAM (2017).  https://doi.org/10.1007/s13398-017-0415-6 CrossRefGoogle Scholar
  33. 33.
    Unal, B.: Multiply warped products. J. Geom. Phys. 34(3), 287–301 (2000)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yano, K., Kon, M.: Structures on manifolds, Series in Pure Mathematics. World Scientific Publishing Co., Singapore (1984)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of MathematicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations