Third Hankel Determinants for Subclasses of Univalent Functions

  • Paweł ZaprawaEmail author
Open Access


The main aim of this paper is to discuss the third Hankel determinants for three classes: \(S^*\) of starlike functions, \(\mathcal {K}\) of convex functions and \(\mathcal {R}\) of functions whose derivative has a positive real part. Moreover, the sharp results for twofold and threefold symmetric functions from these classes are obtained.


Hankel determinant starlike functions convex functions n-fold symmetric functions 

Mathematics Subject Classification



  1. 1.
    Babalola, K.O.: On \(H_3(1)\) Hankel determinants for some classes of univalent functions. In: Dragomir, S.S., Cho, J.Y. (eds.) Inequality Theory and Applications, vol. 6, pp. 1–7. Nova Science Publishers, New York (2010)Google Scholar
  2. 2.
    Hayami, T., Owa, S.: Generalized Hankel determinant for certain classes. Int. J. Math. Anal. 4(52), 2573–2585 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Janteng, A., Halim, S.A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 7(2), 1–5 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Janteng, A., Halim, S.A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 1(13), 619–625 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Lee, S.K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. (2013). Art. 281. doi: 10.1186/1029-242X-2013-281
  6. 6.
    Libera, R.J., Zotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 85, 225–230 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Liu, M.S., Xu, J.F., Yang, M.: Upper bound of second Hankel determinant for certain subclasses of analytic functions. Abstr. Appl Anal. (2014). Art. 603180. doi: 10.1155/2014/603180
  8. 8.
    Livingston, A.E.: The coefficients of multivalent close-to-convex functions. Proc. Am. Math. Soc. 21, 545–552 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ma, W.: Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 234(1), 328–339 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Noonan, J.W., Thomas, D.K.: On the Hankel determinants of areally mean p-valent functions. Proc. Lond. Math. Soc. 3(25), 503–524 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pommerenke, C.: On the coefficients and Hankel determinants of univalent functions. Proc. Lond. Math. Soc. 3(41), 111–122 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pommerenke, C.: On the Hankel determinants of univalent functions. Mathematika 14, 108–112 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pommerenke, C.: Univalent functions. Vandenhoeck and Ruprecht, Göttingen (1975)zbMATHGoogle Scholar
  14. 14.
    Raza, M., Malik, S.N.: Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J Inequal. Appl. (2013). Art. 412. doi: 10.1186/1029-242X-2013-412
  15. 15.
    Selvaraj, C., Kumar, T.R.K.: Second Hankel determinant for certain classes of analytic functions. Int. J. Appl. Math. 28(1), 37–50 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Vamshee Krishna, D., RamReddy, T.: Hankel determinant for starlike and convex functions of order alpha. Tbil. Math. J. 5, 65–76 (2012)Google Scholar
  17. 17.
    Vamshee Krishna, D., Venkateswarlua, B., RamReddy, T.: Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 34, 121–127 (2015)Google Scholar
  18. 18.
    Vamshee Krishna, D., Venkateswarlua, B., RamReddy, T.: Third Hankel determinant for certain subclass of p-valent functions. Complex Var. Elliptic Equ. (2015). Available from
  19. 19.
    Zaprawa, P.: Second Hankel determinants for the class of typically real functions. Abstr. Appl. Anal. (2016). Art. 3792367. doi: 10.1155/2016/3792367

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mechanical EngineeringLublin University of TechnologyLublinPoland

Personalised recommendations