Mediterranean Journal of Mathematics

, Volume 13, Issue 5, pp 3303–3309 | Cite as

A Note on Group Extensions and Proper 3-Realizability

  • M. Cárdenas
  • F. F. LasherasEmail author
  • A. Quintero
  • R. Roy


The interaction between the study of three-dimensional manifolds and a particular stream of group theory has often been fruitful. In the realm of this, we recall that a finitely presented group G is properly 3-realizable if for some finite 2-dimensional CW-complex X with \({\pi_1(X) \cong G}\), the universal cover of X has the proper homotopy type of a 3-manifold. In this paper, we generalize a previous result on the direct products of groups; more precisely, we show that if \({N \rightarrow G \rightarrow Q}\) is a short exact sequence of infinite finitely presented groups, then G is properly 3-realizable. In particular, any semidirect product of two infinite finitely presented groups is properly 3-realizable. As an application, we show proper 3-realizability for certain classes of groups.

Mathematics Subject Classification

Primary 57M07 Secondary 57M10 57M20 


proper homotopy fundamental pro-group properly 3-realizable 3-manifold extensions of groups semidirect products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayala R., Cárdenas M., Lasheras F.F., Quintero A.: Properly 3-realizable group. Proc. Am. Math. Soc. 133(5), 1527–1535 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brieskorn E., Saito K.: Artin-gruppen und Coxeter-gruppen. Invent. Math. 17, 245–271 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cárdenas M., Lasheras F.F., Muro F., Quintero A.: Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces. Top. Appl. 153, 580–604 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cárdenas, M., Lasheras, F.F., Quintero, A., Repovš, D.: Amalgamated products and properly 3-realizable groups. J. Pure Appl. Algebra 208(1), 293–296 (2007)Google Scholar
  5. 5.
    Cárdenas M., Lasheras F.F., Quintero A., Repovš D.: One-relator groups and proper 3-realizability. Rev. Mat. Iberoamericana 25(2), 739–756 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cárdenas M., Lasheras F.F., Roy R.: Direct products and properly 3-realisable groups. Bull. Aust. Math. Soc. 70, 199–205 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Charney R.: An introduction to right-angled Artin groups. Geom. Dedicata 125, 141–158 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Davis, J.: The geometry and topology of Coxeter groups. London Math. Soc. Monographs Ser., vol. 32. Princeton University Press, Princeton (2008)Google Scholar
  9. 9.
    Funar L., Lasheras F.F., Repovš D.: Groups which are not properly 3-realizable. Rev. Mat. Iberoamericana 28(2), 401–414 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Geoghegan, R.: Topological methods in group theory. Graduate Texts in Mathematics, vol. 243. Springer, Berlin (2008)Google Scholar
  11. 11.
    Geoghegan R., Mihalik M.: Free abelian cohomology of groups and ends of universal covers. J. Pure Appl. Algebra 36, 123–137 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gromov M.: Groups of polynomial growth and expanding maps. Publ. Math. IHES 53, 53–78 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2 (Sussex 1991). London Math. Soc. Lecture Notes Ser., vol. 182, pp. 1–295. Cambridge Univ. Press, Cambridge (1993)Google Scholar
  14. 14.
    Houghton C.H.: Cohomology and the behavior at infinity of finitely presented groups. J. London Math. Soc. 15(2), 465–471 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jackson, B.: End invariants of group extensions. Topology 21, 71–81 (1982)Google Scholar
  16. 16.
    Lasheras F.F.: Ascending HNN-extensions and properly 3-realisable groups. Bull. Aust. Math. Soc. 72, 187–196 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lasheras, F.F., Roy, R.: Relating the Freiheitssatz to the asymptotic behavior of a group. Rev. Mat. Iberoamericana 29(1), 75–89 (2013)Google Scholar
  18. 18.
    Mardesic, S., Segal, J.: Shape Theory. North-Holland, Philadelphia (1982)Google Scholar
  19. 19.
    Mihalik M.: Semistability at the end of a group extension. Trans. Am. Math. Soc. 277(1), 307–321 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Scott, P., Wall, C.T.C.: Topological methods in group theory. In: Homological Group Theory, London Math. Soc. Lecture Notes, pp. 137–204. Cambridge Univ. Press, Cambridge (1979)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • M. Cárdenas
    • 1
  • F. F. Lasheras
    • 1
    Email author
  • A. Quintero
    • 1
  • R. Roy
    • 2
  1. 1.Departamento de Geometría y TopologíaUniversidad de SevillaSevillaSpain
  2. 2.New York Institute of TechnologyOld WestburyUSA

Personalised recommendations