Mediterranean Journal of Mathematics

, Volume 13, Issue 5, pp 3205–3219 | Cite as

Homomorphisms to \({\mathbb{R}}\) Generated by Quasimorphisms

Article
  • 47 Downloads

Abstract

Erschler and Karlsson in Annales de l’Institut Fourier 60(6):2095–2113, 2010 construct a homomorphism of a finitely generated group G to \({\mathbb{R}}\) using a random walk approach. Central to their construction were the word length \({\ell}\) and a well behaved measure \({\mu}\) on G. We consider a modified version of this construction using instead of \({\ell}\) a quasimorphism f of G. Moreover, if a group H acts on G via group automorphisms we show that this technique can be adapted to construct a homomorphism of the semidirect product \({G \rtimes_{\phi} H}\) to \({\mathbb{R}}\), in analogy with the word length case (Bettencourt and Mendes, Appl. Math. Inf. Sci. 9(6):1–7, 2015).

Keywords

Random walks on groups Homomorphisms Quasimorphisms Semidirect product 

Mathematics Subject Classification

Primary 60B15 Secondary 20F65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A’Campo, N.: A natural construction for the real numbers. arXiv:math/0301015
  2. 2.
    Avez M.: Entropie des groupes de type fini. C. R. Acad. Sc. Paris Ser. A T. 275(25), 1363–1366 (1972)MathSciNetMATHGoogle Scholar
  3. 3.
    Avez, M.: In: Dold, A., Eckmann, B. (eds.) Théorie Ergodique, Actes des Journées Ergodiques, Rennes 1973/1974, Lectures Notes in Mathematics, vol. 532. Springer-Verlag, pp. 35–49 (1976)Google Scholar
  4. 4.
    Bettencourt G., Mendes S.: Homomorphisms to \({\mathbb{R}}\) of semidirect products: a dynamical construction. Appl. Math. Inf. Sci. 9(6), 1–7 (2015)MathSciNetGoogle Scholar
  5. 5.
    Bourbaki, N.: Elements of mathematics: general topology, Part 1. Hermann (1966)Google Scholar
  6. 6.
    Calegari, D.: scl MSJ Memoirs, vol. 20 (2009)Google Scholar
  7. 7.
    Erschler A., Karlsson A.: Homomorphisms to \({\mathbb{R}}\) constructed from random walks. Annales de l’Institut Fourier 60(6), 2095–2113 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Karlsson, A., Ledrappier, F.: Linear drift and Poisson boundary for random walks. Pure Appl. Math. Q. 3(4, part 1), 1027–1036 (2007)Google Scholar
  9. 9.
    Kaimanovich V., Vershik A.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kesten H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Monod, N.: An invitation to bounded cohomology. In: Proceedings of the international Congress of Mathematicians (Madrid, August 22–30, 2006). Eur. Math. Soc., Zürich, pp. 1183–1211 (2007)Google Scholar
  12. 12.
    Pólya G.: Uber eine Aufgabe der Wahrscheinlichkeitstheorie betreffend dieIrrfahrt im Straßennetz. Math Ann. 84, 149–160 (1921)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Vershik, A.: Numerical characteristic of the groups and their relations. Zapiski Nauchn. Semin. POMI 256, 5–18 (1999) [English translation: J. Math. Sci. 107(5), 4147–4156 (2001)]Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Department of MathematicsISCTE-Lisbon University InstituteLisbonPortugal

Personalised recommendations