Mediterranean Journal of Mathematics

, Volume 13, Issue 5, pp 3121–3133 | Cite as

New Extensions of Popoviciu’s Inequality

  • Marcela V. Mihai
  • Flavia-Corina Mitroi-Symeonidis
Article

Abstract

Popoviciu’s inequality is extended to the framework of h-convexity and also to convexity with respect to a pair of quasi-arithmetic means. Several applications are included.

Keywords

Popoviciu’s inequality convex function Quasi-arithmetic mean 

Mathematics Subject Classification

Primary 26A51 Secondary 54C60 39B62 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczél J.: A generalization of the notion of convex functions. Norske Vid. Selsk. Forhd., Trondhjem 19(24), 87–90 (1947)MathSciNetMATHGoogle Scholar
  2. 2.
    Anderson G.D., Vamanamurthy M.K., Vuorinen M.: Generalized convexity and inequalities. J. Math. Anal. Appl 335, 1294–1308 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aumann G.: Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelwerten. Bayer. Akad. Wiss. Math.-Natur. Kl. Abh., Math. Ann 109, 405–413 (1933)MATHGoogle Scholar
  4. 4.
    Bencze M., Niculescu C.P., Popovici F.: Popoviciu’s inequality for functions of several variables. J. Math. Anal. Appl 365(1), 399–409 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Borwein D., Borwein J., Fee G., Girgensohn R.: Refined convexity and special cases of the Blaschke–Santalo inequality. Math. Inequal. Appl 4, 631–638 (2001)MathSciNetMATHGoogle Scholar
  6. 6.
    Breckner W.W.: Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) 23, 1978, 13-20Google Scholar
  7. 7.
    Dragomir S.S., Pečarić J., Persson L.-E.: Some inequalities of Hadamard type. Soochow J. Math 21, 335–341 (1995)MathSciNetMATHGoogle Scholar
  8. 8.
    Godunova, E.K.; Levin, V.I.: Neravenstva dlja funkcii širokogo klassa, soderžašcego vypuklye, monotonnye i nekotorye drugie vidy funkcii, Vyčislitel. Mat. i. Mat. Fiz. Mežvuzov. Sb. Nauč. Trudov, MGPI, Moskva, pp. 138–142. (1985)Google Scholar
  9. 9.
    Hudzik H., Maligranda L.: Some remarks on s-convex functions. Aequ. Math. 48, 100–111 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Khan, K.A., Niculescu, C.P., Pečarić, J.E.: An Note on Jensen’s inequality for 2D-Convex Functions. An. Univ. Craiova Ser. Mat. Inform. 40(2), 1–4 (2013)Google Scholar
  11. 11.
    Mitrinović, D.S.: Analytic Inequalities, Springer, (1970)Google Scholar
  12. 12.
    Neuman E.D.: The weighted logarithmic mean. J. Math. Anal. Appl 188, 885–900 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Niculescu C.P.: The integral version of Popoviciu’s inequality. J. Math. Inequal 3(3), 323–328 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Niculescu C.P.: The Hermite–Hadamard inequality for log-convex functions. Nonlinear Anal. 75, 662–669 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Niculescu, C.P.; Persson, L.-E.: Convex functions and their applications: a contemporary approach, Springer Science & Business, 2006Google Scholar
  16. 16.
    Niculescu C.P.; Popovici, F.: A Refinement of Popoviciu’s inequality, Bull. Math. Soc. Sci. Math. Roumanie 49 (97), 2006, No. 3, 285–290Google Scholar
  17. 17.
    Niculescu, C.P.; Popovici, F.: The extension of majorization inequalities within the framework of relative convexity, J. Inequal. Pure Appl. Math 7 (2006), Issue 1, article 27Google Scholar
  18. 18.
    Niculescu, C. P.; Rovenţa, I.: Relative Convexity and Its Applications, Aequ. Math. doi:10.1007/s00010-014-0319-x
  19. 19.
    Niculescu C.P., Rovenţa I.: Relative convexity on global NPC spaces. Math. Inequal. Appl 18(3), 1111–1119 (2015)MathSciNetMATHGoogle Scholar
  20. 20.
    Niculescu, C.P.; Stephan, H.: Lagrange’s Barycentric Identity From An Analytic Viewpoint, Bull. Math. Soc. Sci. Math. Roumanie, 56 (104), no. 4, 2013, 487–496Google Scholar
  21. 21.
    Pečarić, J. E.; Proschan, F.; Tong, Y. L.: Convex functions, partial orderings, and statistical applications, Academic Press, 1992Google Scholar
  22. 22.
    Pinheiro M.R.: Exploring the concept of s-convexity. Aeq. Math. 74, 201–209 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Popoviciu, T.: Sur certaines inégalités qui caractérisent les fonctions convexes (Romanian), An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. 11B (1965), 155–164Google Scholar
  24. 24.
    Varošanec S.: On h-convexity. J. Math. Anal. Appl 326, 303–311 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Vasić P.M., Stanković L.j.R.: Some inequalities for convex functions. Math. Balk. 6, 281–288 (1976)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Marcela V. Mihai
    • 1
  • Flavia-Corina Mitroi-Symeonidis
    • 2
  1. 1.Romanian Mathematical SocietyBucharestRomania
  2. 2.Faculty of Engineering SciencesUniversity of South-East Europe - LUMINABucharestRomania

Personalised recommendations