Global Solutions for Abstract Differential Equations with Non-Instantaneous Impulses
Article
First Online:
- 234 Downloads
- 16 Citations
Abstract
In this note we study the existence of global solutions for a class of impulsive abstract differential equations with non-instantaneous impulses. Specifically, we establish the existence of mild solutions on \({[0, \infty)}\) and the existence of \({\mathcal{S}}\)-asymptotically \({\omega}\)-periodic mild solutions. Our results are based on the Hausdorff measure of non-compactness. Some applications involving partial differential equations are considered.
Keywords
First-order abstract Cauchy problem impulsivedifferential equations mild solutions asymptotically periodic solutions strongly continuous semigroups of linear operatorsMathematics Subject Classification
34K30 34K45 35R12 47D06Preview
Unable to display preview. Download preview PDF.
References
- 1.Abbas S., Benchohra M., N’Guérékata G.M.: Topics in fractional differential equations. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
- 2.Abada N., Benchohra M., Hammouche H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 246(10), 3834–3863 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Ahmad S., Stamov G.T.: Almost periodic solutions of N-dimensional impulsive competitive systems. Nonlinear Anal. Real World Appl. 10(3), 1846–1853 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Banaś, J.; Goebel, K.: Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math. 60, Marcel Dekker, New York (1980)Google Scholar
- 5.Benchohra, M.; Henderson, J.; Ntouyas, S.: Impulsive differential equations and inclusions. Contemporary mathematics and its applications, 2. Hindawi Publishing Corporation, New York (2006)Google Scholar
- 6.Bothe D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Chu J., Nieto J.J.: Impulsive periodic solutions of first-order singular differential equations. Bull. Lond. Math. Soc. 40(1), 143–150 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Darbo G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova. 24, 84–92 (1955)MathSciNetzbMATHGoogle Scholar
- 9.Fan Z., Li G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258(5), 1709–1727 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Franco, D.; Liz, E.; Nieto, J.J.; Rogovchenko, Y.V.: A contribution to the study of functional differential equations with impulses. Math. Nachr. 218:49–60 (2000)Google Scholar
- 11.Frigon M., O’Regan D.: First-order impulsive initial and periodic problems with variable moments. J. Math. Anal. Appl. 233(2), 730–739 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Frigon M., O’Regan D.: Existence results for first-order impulsive differential equations. J. Math. Anal. Appl. 193(1), 96–113 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Granas A., Dugundji J.: Fixed point theory. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
- 14.Górniewicz L.: Topological fixed point theory of multivalued mappings. Springer, Dordrecht (2006)zbMATHGoogle Scholar
- 15.He M., Chen F., Li Z.: Almost periodic solution of an impulsive differential equation model of plankton allelopathy. Nonlinear Anal. Real World Appl. 11(4), 2296–2301 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Heinz H.-P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7(12), 1351–1371 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Henríquez H., Pierri M., Táboas P.: On \({\mathcal{S}}\)-asymptotically \({\omega}\)-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 343(2), 1119–1130 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Henríquez H., Pierri M., Táboas P.: Existence of \({\mathcal{S}}\)-asymptotically \({\omega}\)-periodic solutions for abstract neutral equations. Bull. Aust. Math. Soc. 78(3), 365–382 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Hernández E., Henríquez H., Rabello M.: Existence of solutions for a class of impulsive partial neutral functional differential equations. J. Math. Anal. Appl. 331(2), 1135–1158 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Hernández E., O’Regan D.: On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141(5), 1641–1649 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Kou C., Zhang S., Wu S.: Stability analysis in terms of two measures for impulsive differential equations. J. London Math. Soc. 2(66(1)), 142–152 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of impulsive differential equations. Series in Modern Applied Mathematics, 6. World Scientific Publishing Co.; Inc., Teaneck (1989)Google Scholar
- 23.Li Y., Lu L., Zhu X.: Existence of periodic solutions in n-species food-chain system with impulsive. Nonlinear Anal. Real World Appl. 7(3), 414–431 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Liu L., Guo F., Wu C., Wu Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309(2), 638–649 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Liu J.H.: Nonlinear impulsive evolution equations. Dynam. Contin. Discrete Impuls. Systems. 6(1), 77–85 (1999)MathSciNetzbMATHGoogle Scholar
- 26.Luo Z., Jing Z.: Periodic boundary value problem for first-order impulsive functional differential equations. Comput. Math. Appl. 55(9), 2094–2107 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Marle C.-M.: Mesures et Probabilités. Hermann, Paris (1974)zbMATHGoogle Scholar
- 28.Nicola S., Pierri M.: A note on \({\mathcal{S}}\)-asymptotically periodic functions. Nonlinear Anal. Real World Appl. 10(5), 2937–2938 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Nieto J.J., O’Regan D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10(2), 680–690 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Pazy A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer, New York-Berlin (1983)CrossRefzbMATHGoogle Scholar
- 31.Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219(12), 6743–6749 (2013)Google Scholar
- 32.Pierri, M., Rolnik, V.: On pseudo S-asymptotically periodic functions. Bull. Aust. Math. Soc. 87(2), 238–254 (2013)Google Scholar
- 33.Pierri, M.: On S-Asymptotically \({\omega}\)-Periodic functions and applications. Nonlinear Anal. 75:651–661 (2012)Google Scholar
- 34.Rogovchenko Y.V.: Impulsive evolution systems: main results and new trends. Dynam. Contin. Discrete Impuls. Syst. 3(1), 57–88 (1997)MathSciNetzbMATHGoogle Scholar
- 35.Rogovchenko Y.V.: Nonlinear impulse evolution systems and applications to population models. J. Math. Anal. Appl. 207(2), 300–315 (1997)MathSciNetCrossRefGoogle Scholar
- 36.Sadovskiĭ B.N.: On a fixed point principle. Funct. Anal. Appl. 1(2), 74–76 (1967)MathSciNetzbMATHGoogle Scholar
- 37.Samoilenko, A.M., Perestyuk, N.A.: Impulsive differential equations. With a preface by Yu. A. Mitropol’skii and a supplement by S. I. Trofimchuk. Translated from the Russian by Y. Chapovsky. World Scientific Series on Nonlinear Science. Series A: Monographs and treatises, 14. World Scientific Publishing Co., Inc., River Edge (1995)Google Scholar
- 38.Stamov G.T.: Almost periodic solutions in impulsive competitive systems with infinite delays. Publ. Math. Debrecen. 76(1–2), 89–100 (2010)MathSciNetzbMATHGoogle Scholar
- 39.Stamov, G.T.: Almost periodic solutions of impulsive differential equations. Lecture Notes in Mathematics, 2047. Springer, New York (2012)Google Scholar
- 40.Wang K., Zhu Y.: Periodic solutions, permanence and global attractivity of a delayed impulsive prey-predator system with mutual interference. Nonlinear Anal. Real World Appl. 14(2), 1044–1054 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Wang L., Yu M., Niu P.: Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays. Comput. Math. Appl. 64(8), 2383–2394 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Yao M., Zhao A., Yan J.: Anti-periodic boundary value problems of second order impulsive differential equations. Comput. Math. Appl. 59(12), 3617–3629 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 43.Yu J.S., Tang X.H.: Global attractivity in a delay population model under impulsive perturbations. Bull. London Math. Soc. 34(3), 319–328 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 44.Zhou, W.-X.; Peng, J.: Existence of solution to a second-order boundary value problem via noncompactness measures, Discrete Dynam. Nature Soc. 786404:16, (2012)Google Scholar
Copyright information
© Springer Basel 2015