Mediterranean Journal of Mathematics

, Volume 13, Issue 4, pp 1685–1708 | Cite as

Global Solutions for Abstract Differential Equations with Non-Instantaneous Impulses

  • Michelle PierriEmail author
  • Hernán R. Henríquez
  • Andréa Prokopczyk


In this note we study the existence of global solutions for a class of impulsive abstract differential equations with non-instantaneous impulses. Specifically, we establish the existence of mild solutions on \({[0, \infty)}\) and the existence of \({\mathcal{S}}\)-asymptotically \({\omega}\)-periodic mild solutions. Our results are based on the Hausdorff measure of non-compactness. Some applications involving partial differential equations are considered.


First-order abstract Cauchy problem impulsivedifferential equations mild solutions asymptotically periodic solutions strongly continuous semigroups of linear operators 

Mathematics Subject Classification

34K30 34K45 35R12 47D06 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbas S., Benchohra M., N’Guérékata G.M.: Topics in fractional differential equations. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abada N., Benchohra M., Hammouche H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 246(10), 3834–3863 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ahmad S., Stamov G.T.: Almost periodic solutions of N-dimensional impulsive competitive systems. Nonlinear Anal. Real World Appl. 10(3), 1846–1853 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Banaś, J.; Goebel, K.: Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math. 60, Marcel Dekker, New York (1980)Google Scholar
  5. 5.
    Benchohra, M.; Henderson, J.; Ntouyas, S.: Impulsive differential equations and inclusions. Contemporary mathematics and its applications, 2. Hindawi Publishing Corporation, New York (2006)Google Scholar
  6. 6.
    Bothe D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chu J., Nieto J.J.: Impulsive periodic solutions of first-order singular differential equations. Bull. Lond. Math. Soc. 40(1), 143–150 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Darbo G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova. 24, 84–92 (1955)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fan Z., Li G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258(5), 1709–1727 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Franco, D.; Liz, E.; Nieto, J.J.; Rogovchenko, Y.V.: A contribution to the study of functional differential equations with impulses. Math. Nachr. 218:49–60 (2000)Google Scholar
  11. 11.
    Frigon M., O’Regan D.: First-order impulsive initial and periodic problems with variable moments. J. Math. Anal. Appl. 233(2), 730–739 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Frigon M., O’Regan D.: Existence results for first-order impulsive differential equations. J. Math. Anal. Appl. 193(1), 96–113 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Granas A., Dugundji J.: Fixed point theory. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Górniewicz L.: Topological fixed point theory of multivalued mappings. Springer, Dordrecht (2006)zbMATHGoogle Scholar
  15. 15.
    He M., Chen F., Li Z.: Almost periodic solution of an impulsive differential equation model of plankton allelopathy. Nonlinear Anal. Real World Appl. 11(4), 2296–2301 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Heinz H.-P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7(12), 1351–1371 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Henríquez H., Pierri M., Táboas P.: On \({\mathcal{S}}\)-asymptotically \({\omega}\)-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 343(2), 1119–1130 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Henríquez H., Pierri M., Táboas P.: Existence of \({\mathcal{S}}\)-asymptotically \({\omega}\)-periodic solutions for abstract neutral equations. Bull. Aust. Math. Soc. 78(3), 365–382 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hernández E., Henríquez H., Rabello M.: Existence of solutions for a class of impulsive partial neutral functional differential equations. J. Math. Anal. Appl. 331(2), 1135–1158 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hernández E., O’Regan D.: On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141(5), 1641–1649 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kou C., Zhang S., Wu S.: Stability analysis in terms of two measures for impulsive differential equations. J. London Math. Soc. 2(66(1)), 142–152 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of impulsive differential equations. Series in Modern Applied Mathematics, 6. World Scientific Publishing Co.; Inc., Teaneck (1989)Google Scholar
  23. 23.
    Li Y., Lu L., Zhu X.: Existence of periodic solutions in n-species food-chain system with impulsive. Nonlinear Anal. Real World Appl. 7(3), 414–431 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu L., Guo F., Wu C., Wu Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309(2), 638–649 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu J.H.: Nonlinear impulsive evolution equations. Dynam. Contin. Discrete Impuls. Systems. 6(1), 77–85 (1999)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Luo Z., Jing Z.: Periodic boundary value problem for first-order impulsive functional differential equations. Comput. Math. Appl. 55(9), 2094–2107 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Marle C.-M.: Mesures et Probabilités. Hermann, Paris (1974)zbMATHGoogle Scholar
  28. 28.
    Nicola S., Pierri M.: A note on \({\mathcal{S}}\)-asymptotically periodic functions. Nonlinear Anal. Real World Appl. 10(5), 2937–2938 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nieto J.J., O’Regan D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10(2), 680–690 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pazy A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer, New York-Berlin (1983)CrossRefzbMATHGoogle Scholar
  31. 31.
    Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219(12), 6743–6749 (2013)Google Scholar
  32. 32.
    Pierri, M., Rolnik, V.: On pseudo S-asymptotically periodic functions. Bull. Aust. Math. Soc. 87(2), 238–254 (2013)Google Scholar
  33. 33.
    Pierri, M.: On S-Asymptotically \({\omega}\)-Periodic functions and applications. Nonlinear Anal. 75:651–661 (2012)Google Scholar
  34. 34.
    Rogovchenko Y.V.: Impulsive evolution systems: main results and new trends. Dynam. Contin. Discrete Impuls. Syst. 3(1), 57–88 (1997)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Rogovchenko Y.V.: Nonlinear impulse evolution systems and applications to population models. J. Math. Anal. Appl. 207(2), 300–315 (1997)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sadovskiĭ B.N.: On a fixed point principle. Funct. Anal. Appl. 1(2), 74–76 (1967)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Samoilenko, A.M., Perestyuk, N.A.: Impulsive differential equations. With a preface by Yu. A. Mitropol’skii and a supplement by S. I. Trofimchuk. Translated from the Russian by Y. Chapovsky. World Scientific Series on Nonlinear Science. Series A: Monographs and treatises, 14. World Scientific Publishing Co., Inc., River Edge (1995)Google Scholar
  38. 38.
    Stamov G.T.: Almost periodic solutions in impulsive competitive systems with infinite delays. Publ. Math. Debrecen. 76(1–2), 89–100 (2010)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Stamov, G.T.: Almost periodic solutions of impulsive differential equations. Lecture Notes in Mathematics, 2047. Springer, New York (2012)Google Scholar
  40. 40.
    Wang K., Zhu Y.: Periodic solutions, permanence and global attractivity of a delayed impulsive prey-predator system with mutual interference. Nonlinear Anal. Real World Appl. 14(2), 1044–1054 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wang L., Yu M., Niu P.: Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays. Comput. Math. Appl. 64(8), 2383–2394 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Yao M., Zhao A., Yan J.: Anti-periodic boundary value problems of second order impulsive differential equations. Comput. Math. Appl. 59(12), 3617–3629 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Yu J.S., Tang X.H.: Global attractivity in a delay population model under impulsive perturbations. Bull. London Math. Soc. 34(3), 319–328 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zhou, W.-X.; Peng, J.: Existence of solution to a second-order boundary value problem via noncompactness measures, Discrete Dynam. Nature Soc. 786404:16, (2012)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Michelle Pierri
    • 1
    Email author
  • Hernán R. Henríquez
    • 2
  • Andréa Prokopczyk
    • 3
  1. 1.Departamento de Computação e MatemáticaFaculdade deFilosofia, Ciências e Letras de Ribeirão Preto. Universidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de MatemáticaUniversidad de Santiago USACHSantiagoChile
  3. 3.Instituto de Biociências, Letras e Ciências ExatasUniversidade Estadual PaulistaSão José do Rio PretoBrazil

Personalised recommendations