Mediterranean Journal of Mathematics

, Volume 12, Issue 4, pp 1215–1226 | Cite as

An \({\mathcal{A}_\infty}\) Operad in Spineless Cacti

  • Imma Gálvez-Carrillo
  • Leandro Lombardi
  • Andrew Tonks
Article

Abstract

The dg operad \({\mathcal{C}}\) of cellular chains on the operad of spineless cacti of Kaufmann (Topology 46(1):39–88, 2007) is isomorphic to the Gerstenhaber–Voronov dg operad codifying the cup product and brace operations on the Hochschild cochains of an associative algebra, and to the suboperad \({F_2\mathcal{X}}\) of the surjection operad of Berger and Fresse (Math Proc Camb Philos Soc 137(1):135–174, 2004), McClure and Smith (Recent progress in homotopy theory (Baltimore, MD, 2000). Contemp Math., Amer. Math. Soc., Providence 293:153–193, 2002) and McClure and Smith (J Am Math Soc 16(3):681–704, 2003). Its homology is the Gerstenhaber dg operad \({\mathcal{G}}\). We construct a map of dg operads \({\psi \colon \mathcal{A}_\infty \longrightarrow \mathcal{C}}\) such that \({\psi(m_2)}\) is commutative and \({H_*(\psi)}\) is the canonical map \({\mathcal{A} \to \mathcal{C}\!om \to \mathcal{G}}\). This formalises the idea that, since the cup product is commutative in homology, its symmetrisation is a homotopy associative operation. Our explicit \({\mathcal{A}_\infty}\) structure does not vanish on non-trivial shuffles in higher degrees, so does not give a map \({\mathcal{C}om_\infty \to \mathcal{C}}\). If such a map could be written down explicitly, it would immediately lead to a \({\mathcal{G}_\infty}\) structure on \({\mathcal{C}}\) and on Hochschild cochains, that is, to an explicit and direct proof of the Deligne conjecture.

Mathematics Subject Classification

Primary 18D50 Secondary 55P48 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger C., Fresse B.: Combinatorial operad actions on cochains. Math. Proc. Camb. Philos. Soc. 137(1), 135–174 (2004)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Cohen R.L., Jones J.D.S.: A homotopy theoretic realization of string topology. Math. Ann 324(4), 773–798 (2002)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Gerstenhaber, M., Voronov, A.A.: Homotopy G-algebras and moduli space operad. Int. Math. Res. Not., 3, 141–153 (1995) (electronic) Google Scholar
  4. 4.
    Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. http://arxiv.org/abs/hep-th/9403055 (1994)
  5. 5.
    Kaufmann, R.M.: On several varieties of cacti and their relations. Algebr. Geom. Topol., 5, 237–300 (2005) (electronic) Google Scholar
  6. 6.
    Kaufmann R.M.: On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra. Topology 46(1), 39–88 (2007)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kaufmann R.M.: A proof of a cyclic version of Deligne’s conjecture via cacti. Math. Res. Lett. 15(5), 901–921 (2008)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kaufmann, R.M., Livernet, M., Penner, R.C.: Arc operads and arc algebras. Geom. Topol., 7, 511–568 (2003) (electronic) Google Scholar
  9. 9.
    Kaufmann R.M., Schwell R.: Associahedra, cyclohedra and a topological solution to the \({A_\infty}\) Deligne conjecture. Adv. Math 223(6), 2166–2199 (2010)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and the Deligne conjecture. In: Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, pp. 255–307. Kluwer Acad. Publ., Dordrecht (2000)Google Scholar
  11. 11.
    Loday, J.-L., Vallette, B.: Algebraic operads. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    McClure, J.E., Smith, J.H.: A solution of Deligne’s Hochschild cohomology conjecture. In: Recent progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math., vol. 293, pp. 153–193. Amer. Math. Soc., Providence (2002)Google Scholar
  13. 13.
    McClure, J.E., Smith, J.H.: Multivariable cochain operations and little n-cubes. J. Am. Math. Soc., 16(3), 681–704 (2003) (electronic) Google Scholar
  14. 14.
    Salvatore P.: The topological cyclic Deligne conjecture. Algebr. Geom. Topol 9(1), 237–264 (2009)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Tamarkin, D.E.: Another proof of M. Kontsevich formality theorem. http://arxiv.org/abs/math/9803025 (1998)
  16. 16.
    Voronov, A.A.: Notes on universal algebra. In: Graphs and Patterns in Mathematics and Theoretical Physics, Proc. Sympos. Pure Math., vol. 73, pp. 81–103. Amer. Math. Soc., Providence (2005)Google Scholar
  17. 17.
    Zhang, Y., Bai, C., Guo, L.: The category and operad of matching dialgebras. Appl. Categor. Struct. (2012)Google Scholar
  18. 18.
    Zinbiel, G.W.: Encyclopedia of types of algebras. In: Guo, L., Bai, C., Loday, J.-L. (eds.) Operads and universal algebra. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 9. World Sci. Publ., Hackensack (2010)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Imma Gálvez-Carrillo
    • 1
  • Leandro Lombardi
    • 2
  • Andrew Tonks
    • 3
  1. 1.Departament de Matemàtica Aplicada IIIUniversitat Politècnica de CatalunyaTerrassaSpain
  2. 2.Departamento de MatemáticaUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
  3. 3.Department of MathematicsUniversity of LeicesterLeicesterUK

Personalised recommendations