Mediterranean Journal of Mathematics

, Volume 13, Issue 4, pp 1893–1906 | Cite as

Lipschitz-Free Spaces Over Ultrametric Spaces

Open Access
Article

Abstract

We prove that the Lipschitz-free space over a separable ultrametric space has a monotone Schauder basis and is isomorphic to 1. This extends results of A. Dalet using an alternative approach.

Mathematics Subject Classification

46B03 46B15 54E35 

Keywords

Lipschitz-free space ultrametric space Schauder basis 

References

  1. 1.
    Dalet, A.: Free spaces over countable compact metric spaces. Proc. Am. Math. Soc. (electronically published on February 25) (2015) doi:10.1090/S0002-9939-2015-12518-X (to appear in print)
  2. 2.
    Dalet, A.: Free spaces over some proper metric spaces. Mediterr. J. Math. (electronically published on August 12) (2014) doi:10.1007/s00009-014-0455-5 (to appear in print)
  3. 3.
    Dalet, A., Kaufmann, P., Procházka, A.: Free spaces over ultrametric spaces are never isometric to ℓ1 (2015). http://arxiv.org/pdf/1502.02719.pdf
  4. 4.
    David, G., Semmes, S.: Fractured fractals and broken dreams, vol. 7 of Oxford Lecture Series in Mathematics and its Applications. Self-similar geometry through metric and measure. The Clarendon Press, Oxford University Press, New York (1997)Google Scholar
  5. 5.
    Evans, S.N.: Probability and real trees, vol 1920 of Lecture Notes in Mathematics, Springer, Berlin, 2008. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23 (2005)Google Scholar
  6. 6.
    Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach space theory. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. The basis for linear and nonlinear analysis. Springer, New York (2011)Google Scholar
  7. 7.
    Godard A.: Tree metrics and their Lipschitz-free spaces. Proc. Am. Math. Soc. 138, 4311–4320 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Godefroy, G., Kalton, N.J.: Lipschitz-free Banach spaces. Studia Math. 159, 121–141 (2003) (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday)Google Scholar
  9. 9.
    Godefroy G., Ozawa N.: Free Banach spaces and the approximation properties. Proc. Am. Math. Soc. 142, 1681–1687 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hájek P., Pernecká E.: On Schauder bases in Lipschitz-free spaces. J. Math. Anal. Appl. 416, 629–646 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Holmes M.R.: The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces. Fund. Math. 140, 199–223 (1992)MathSciNetMATHGoogle Scholar
  12. 12.
    Lacey, H.E.: The isometric theory of classical Banach spaces. Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg (1974)Google Scholar
  13. 13.
    Lancien G., Pernecká E.: Approximation properties and Schauder decompositions in Lipschitz-free spaces. J. Funct. Anal. 264, 2323–2334 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer-Verlag, Berlin-New York (1977)Google Scholar
  15. 15.
    Matoušek J.: Extension of Lipschitz mappings on metric trees. Comment. Math. Univ. Carolin. 31, 99–104 (1990)MathSciNetMATHGoogle Scholar
  16. 16.
    Melleray J., Petrov F.V., Vershik A.M.: Linearly rigid metric spaces and the embedding problem. Fund. Math. 199, 177–194 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Vestfrid I.A.: On a universal ultrametric space. Ukraïn. Mat. Zh. 46, 1700–1706 (1994)MathSciNetMATHGoogle Scholar
  18. 18.
    Weaver N.: Lipschitz algebras. World Scientific Publishing Co., Inc., River Edge (1999)CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Instytut Matematyczny Polskiej Akademii NaukWarszawaPoland

Personalised recommendations