Mediterranean Journal of Mathematics

, Volume 13, Issue 4, pp 1893–1906 | Cite as

Lipschitz-Free Spaces Over Ultrametric Spaces

Open Access


We prove that the Lipschitz-free space over a separable ultrametric space has a monotone Schauder basis and is isomorphic to 1. This extends results of A. Dalet using an alternative approach.

Mathematics Subject Classification

46B03 46B15 54E35 


Lipschitz-free space ultrametric space Schauder basis 


  1. 1.
    Dalet, A.: Free spaces over countable compact metric spaces. Proc. Am. Math. Soc. (electronically published on February 25) (2015) doi:10.1090/S0002-9939-2015-12518-X (to appear in print)
  2. 2.
    Dalet, A.: Free spaces over some proper metric spaces. Mediterr. J. Math. (electronically published on August 12) (2014) doi:10.1007/s00009-014-0455-5 (to appear in print)
  3. 3.
    Dalet, A., Kaufmann, P., Procházka, A.: Free spaces over ultrametric spaces are never isometric to ℓ1 (2015).
  4. 4.
    David, G., Semmes, S.: Fractured fractals and broken dreams, vol. 7 of Oxford Lecture Series in Mathematics and its Applications. Self-similar geometry through metric and measure. The Clarendon Press, Oxford University Press, New York (1997)Google Scholar
  5. 5.
    Evans, S.N.: Probability and real trees, vol 1920 of Lecture Notes in Mathematics, Springer, Berlin, 2008. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23 (2005)Google Scholar
  6. 6.
    Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach space theory. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. The basis for linear and nonlinear analysis. Springer, New York (2011)Google Scholar
  7. 7.
    Godard A.: Tree metrics and their Lipschitz-free spaces. Proc. Am. Math. Soc. 138, 4311–4320 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Godefroy, G., Kalton, N.J.: Lipschitz-free Banach spaces. Studia Math. 159, 121–141 (2003) (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday)Google Scholar
  9. 9.
    Godefroy G., Ozawa N.: Free Banach spaces and the approximation properties. Proc. Am. Math. Soc. 142, 1681–1687 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hájek P., Pernecká E.: On Schauder bases in Lipschitz-free spaces. J. Math. Anal. Appl. 416, 629–646 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Holmes M.R.: The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces. Fund. Math. 140, 199–223 (1992)MathSciNetMATHGoogle Scholar
  12. 12.
    Lacey, H.E.: The isometric theory of classical Banach spaces. Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg (1974)Google Scholar
  13. 13.
    Lancien G., Pernecká E.: Approximation properties and Schauder decompositions in Lipschitz-free spaces. J. Funct. Anal. 264, 2323–2334 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer-Verlag, Berlin-New York (1977)Google Scholar
  15. 15.
    Matoušek J.: Extension of Lipschitz mappings on metric trees. Comment. Math. Univ. Carolin. 31, 99–104 (1990)MathSciNetMATHGoogle Scholar
  16. 16.
    Melleray J., Petrov F.V., Vershik A.M.: Linearly rigid metric spaces and the embedding problem. Fund. Math. 199, 177–194 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Vestfrid I.A.: On a universal ultrametric space. Ukraïn. Mat. Zh. 46, 1700–1706 (1994)MathSciNetMATHGoogle Scholar
  18. 18.
    Weaver N.: Lipschitz algebras. World Scientific Publishing Co., Inc., River Edge (1999)CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Instytut Matematyczny Polskiej Akademii NaukWarszawaPoland

Personalised recommendations