Mediterranean Journal of Mathematics

, Volume 13, Issue 3, pp 1099–1116 | Cite as

A New Result on Multiplicity of Nontrivial Solutions for the Nonhomogenous Schrödinger–Kirchhoff Type Problem in R N

  • Bitao Cheng


In this paper, we consider the following nonhomogenous Schrödinger–Kirchhoff type problem
$$\left\{ \begin{array}{ll} - (a+b\int_{R^{N}}|\nabla u|^{2}dx)\triangle u + V(x)u =f(x,u)+g(x), & \,\,\,{\rm for} \, x \in R^N, \\ u(x)\rightarrow0, & \,\, {\rm as}\, |x|\rightarrow\infty,\end{array}\right.$$
where constants a > 0, b ≥ 0, N = 1, 2 or 3, \({V\in C(R^{N},R)}\), \({f\in C(R^{N} \times R, R)}\) and \({g\in L^{2}(R^{N})}\). Under more relaxed assumptions on the nonlinear term f that are much weaker than those in Chen and Li (Nonlinear Anal RWA 14:1477–1486, 2013), using some new proof techniques especially the verification of the boundedness of Palais–Smale sequence, a new result on multiplicity of nontrivial solutions for the problem (1.1) is obtained, which sharply improves the known result of Theorem 1.1 in Chen and Li (Nonlinear Anal RWA 14:1477–1486, 2013).


Nonhomogenous Schrödinger–Kirchhoff type problem Ekeland’s variational principle mountain Pass Theorem 

Mathematics Subject Classification

35J20 35J25 35J60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Troestler C., Willem M.: Nontrivial solution of a semilinear Schrödinger equation. Commun. Partial Differ. Equ. 21, 1431–1449 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann N.: A superposition principle and multibump solutions of periodic Schrödinger equation. J. Funct. Anal. 234(2), 277–320 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    del Pino M., Felmer P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. 4, 121–137 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kirchhoff, G.: Mechanik, Teubner, Leipzig (1883)Google Scholar
  5. 5.
    Chipot M., Lovat B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30(7), 4619–4627 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Alves C.O., Corrêa F.J.S.A., Ma T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng B., Wu X.: Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. 71, 4883–4892 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng B., Wu X., Liu J.: Multiple solutions for a class of Kirchhoff type problem with concave nonlinearity. Nonlinear Differ. Equ. Appl. 19, 521–537 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cheng B.: New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems. J. Math. Anal. Appl. 394, 488–495 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    He X., Zou W.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70(3), 1407–1414 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ma T.F., Muñoz Rivera J.E.: Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16, 243–248 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mao A., Zhang Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition. Nonlinear Anal. 70(3), 1275–1287 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Perera K., Zhang Z.: Nontrival solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221(1), 246–255 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang Z., Perera K.: Sign changing solutions of Kirchhoff type problems via invarint sets of descent flow. J. Math. Anal. Appl. 317((2), 456–463 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sun J., Tang C.: Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. 74, 1212–1222 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jin J., Wu X.: Infinitely many radial solutions for Kirchhoff-type problems in R N. J. Math. Anal. Appl. 369, 564–574 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wu X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff–type equations in R N. Nonlinear Anal. RWA 12, 1278–1287 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ye, Y.; Tang, C.: Multiple solutions for Kirchhoff-type equations in R N. J. Math. Phys. 54, 081508, 1–16 (2013)Google Scholar
  19. 19.
    Azzollini, A., d’Avenia, P., Pomponio, A.: (2011) Multiple critical points for a class of nonlinear functions. Ann. Mat. Pura. Appl. 190:507–523Google Scholar
  20. 20.
    Berestycki H., Lions P.: Nonlinear scalar field equations . I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Nie J., Wu X.: Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potentials. Nonlinear Anal. 75, 3470–3479 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang L.: On a quasilinear Schrödinger–Kirchhoff–type equations with radial potentials. Nonlinear Anal. 83, 58–68 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Alves C.O., Figueiredo G.M.: Nonlinear perturbations of a periodic Kirchhoff equation R N. Nonlinear Anal. 75, 2750–2759 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    He X., Zou W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R 3. J. Differ. Equ. 252, 1813–1834 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang J., Tian L., Xu J., Zhang F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li Y., Li F., Shi J.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jeanjean L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R N. Proc. R. Soc. Edinburgh. Sect. A. 129, 787–809 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Chen S., Li L.: Multiple solutions for the nonhomogeneous Kirchhoff equations on R N. Nonlinear Anal. RWA. 14, 1477–1486 (2013)CrossRefzbMATHGoogle Scholar
  29. 29.
    Bartsch T., Wang Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on R N. Comm. Partial Differ. Equ. 20, 1725–1741 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zou, W.M.; Schechter, M.: Critical Point Theory and its Applications, Springer, New York (2006)Google Scholar
  31. 31.
    Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems, Springer, Berlin (1989)Google Scholar
  32. 32.
    Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Application to Differetial Equations. In: CBMS Regional Conf. Ser. in Math., vol. 65, American Mathematical Society, Providence, RI (1986)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Information ScienceQujing Normal UniversityQujingPeople’s Republic of China

Personalised recommendations