Mediterranean Journal of Mathematics

, Volume 13, Issue 2, pp 557–572

# The Grünwald–Letnikov Fractional-Order Derivative with Fixed Memory Length

• Mohammed-Salah Abdelouahab
• Nasr-Eddine Hamri
Article

## Abstract

Contrary to integer-order derivative, the fractional-order derivative of a non-constant periodic function is not a periodic function with the same period. As a consequence of this property, the time-invariant fractional-order systems do not have any non-constant periodic solution unless the lower terminal of the derivative is ±∞, which is not practical. This property limits the applicability of the fractional derivative and makes it unfavorable, for a wide range of periodic real phenomena. Therefore, enlarging the applicability of fractional systems to such periodic real phenomena is an important research topic. In this paper, we give a solution for the above problem by imposing a simple modification on the Grünwald–Letnikov definition of fractional derivative. This modification consists of fixing the memory length and varying the lower terminal of the derivative. It is shown that the new proposed definition of fractional derivative preserves the periodicity.

## Mathematics Subject Classification

Primary 26A33 Secondary 33C20

## Keywords

Fractional derivative memory length periodic function

## References

1. 1.
Ross B.: The development of fractional calculus 1695–1900. Hist. Math. 4, 75–89 (1977)
2. 2.
Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)
3. 3.
ldham K.B.O., Spanier J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic press, inc, USA (1974)Google Scholar
4. 4.
Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)
5. 5.
Butzer P.L., Westphal U.: An introduction to fractional calculus. In: Hilfer, R. (eds) Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000)Google Scholar
6. 6.
Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls Fundamentals and Applications. Springer-Verlag London Limited, London (2010)Google Scholar
7. 7.
Caputo M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)
8. 8.
Bagley R.L., Calico R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)
9. 9.
Sun H.H., Abdelwahab A.A., Onaral B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984)
10. 10.
Ichise M., Nagayanagi Y., Kojima T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)
11. 11.
Heaviside O.: Electromagnetic Theory. Chelsea, New York (1971)
12. 12.
Kusnezov D., Bulgac A., Dang G.D.: Quantum levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)
13. 13.
Abdelouahab, M.-S., Lozi, R., Chua, L.O.: Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurc. Chaos 24(9), 28 p. (2014)Google Scholar
14. 14.
Abdelouahab, M.-S., Hamri, N., Wang, J.: Chaos Control of a Fractional-Order Financial System. Hindawi Pub Corp Math Prob in Engineering, pp. 1–18 (2010)Google Scholar
15. 15.
Abdelouahab M.-S., Hamri N.: Fractional-order hybrid optical system and its chaos control synchronization. EJTP 11(30), 49–62 (2014)Google Scholar
16. 16.
Miranda, J.G.: Synchronization and control of chaos: an introduction for scientists and engineers. Imperial College Press, London (2004)Google Scholar
17. 17.
Tavazoei M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46, 945–948 (2010)
18. 18.
Tavazoei M.S., Haeri M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45, 1886–1890 (2009)
19. 19.
Tavazoei M.S., Haeri M., Attari M., Bolouki S., Siami M.: More details on analysis of fractional-order van der pol oscillator. J. Vib. Control 15(6), 803–819 (2009)
20. 20.
Yazdani M., Salarieh H.: On the existence of periodic solutions in time-invariant fractional order systems. Automatica 47, 1834–1837 (2011)
21. 21.
Kaslik E., Sivasundaram S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13, 1489–1497 (2012)
22. 22.
Abdelouahab M.S., Hamri N., Wang J.W.: Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn. 69, 275–284 (2012)
23. 23.
Cafagna D., Grassi G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)
24. 24.
Diethelm K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)