Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Blow-Up Result in a Nonlinear Wave Equation with Delay

  • 315 Accesses

  • 9 Citations

Abstract

In this paper, we consider a nonlinear wave equation with delay. We show that under suitable conditions on the initial data, the weights of the damping, the delay term and the nonlinear source, the energy of solutions blows up in a finite time.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Ait Benhassi E.M., Ammari K., Boulite S., Maniar L.: Feedback stabilization of a class of evolution equations with delay. J. Evol. Equ. 9, 103–121 (2009)

  2. 2

    Autuori, G., Colasuonno, F., Pucci, P.: Lifespan estimates for solutions of polyharmonic Kirchhoff systems. Math. Models Methods Appl. Sci. 22(2), 1150009 (2012)

  3. 3

    Autuori G., Pucci P., Salvatori M.C.: Global nonexistence for nonlinear Kirchhoff systems. Arch. Ration. Mech. Anal. 196, 489–516 (2010)

  4. 4

    Ball J.: Remarks on blow up and nonexistence theorems for nonlinear evolutions equations. Q. J. Math. Oxf. 28, 473–486 (1977)

  5. 5

    Benaissa, A., Benguessoum, A., Messaoudi, S.A.: Global existence and energy decay of solutions of wave equation with a delay term in the nonlinear internal feedback. J. Math. Phys. 53(12), 123514–123514-19 (2012)

  6. 6

    Feng H., Li S.: Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation. J. Math. Anal. Appl. 391(1), 255–264 (2012)

  7. 7

    Georgiev V., Todorova G.: Existence of solutions of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109, 295–308 (1994)

  8. 8

    Guo Y., Rammaha M.: Blow-up of solutions to systems of nonlinear wave equations with supercritical sources. Appl. Anal. 92(6), 1101–1115 (2013)

  9. 9

    Levine H.A., Serrin J.: A global nonexistence theorem for quasilinear evolution equation with dissipation. Arch. Ration. Mech. Anal. 137, 341–361 (1997)

  10. 10

    Levine H.A.: Instability and nonexistence of global solutions of nonlinear wave equation of the form Pu tt  = Au + F(u). Trans. Am. Math. Soc. 192, 1–21 (1974)

  11. 11

    Levine H.A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equation. SIAM J. Math. Anal. 5, 138–146 (1974)

  12. 12

    Levine H.A., Ro Park S., Serrin J.: Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation. J. Math. Anal. Appl. 228, 181–205 (1998)

  13. 13

    Liu K.: Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35, 1574–1590 (1997)

  14. 14

    Messaoudi S.A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Mathematische Nachrichten 260, 58–66 (2003)

  15. 15

    Messaoudi S.A.: Blow up in a nonlinearly damped wave equation. Mathematische Nachrichten 231, 1–7 (2001)

  16. 16

    Messaoudi, S.A.: Blow up in the Cauchy problem for a nonlinearly damped wave equation. Commun. Appl. Anal. 7(3), 379–386 (2003)

  17. 17

    Messaoudi, S.A., Said-Houari, B.: Blow up of solutions of a class of wave equations with nonlinear damping and source terms. Math. Methods Appl. Sci. 27, 1687–1696 (2004)

  18. 18

    Messaoudi S.A.: Blow up of solutions with positive initial energy in a nonlinear viscoelastic equation. J. Math. Anal. Appl. 320, 902–915 (2006)

  19. 19

    Mustafa M.I.: Uniform stability for thermoelastic systems with boundary time-varying delay. J. Math. Anal. Appl. 383, 490–498 (2011)

  20. 20

    Nicaise S., Pignotti C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561–1585 (2006)

  21. 21

    Nicaise S., Pignotti C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Int. Equ. 21(9–10), 935–958 (2008)

  22. 22

    Nicaise S., Pignotti C., Valein J.: Exponential stability of the wave equation with boundary time-varying delay. Discrete Contin. Dyn. Syst. Ser. S 4(3), 693–722 (2011)

  23. 23

    Nicaise S., Valein J., Fridman E.: Stability of the heat and the wave equations with boundary time-varying delays. Discrete Contin. Dyn. Syst. 2(3), 559–581 (2009)

  24. 24

    Ouchenane D., Zennir Kh., Bayoud M.: Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms. Ukr. Math. J. 65(5), 723–739 (2013)

  25. 25

    Todorova G.: Cauchy problem for a nonlinear wave with nonlinear damping and source terms. C. R. Acad. Sci. Paris Ser. I 326, 191–196 (1998)

  26. 26

    Todorova G.: Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms. J. Math. Anal. Appl. 239, 213–226 (1999)

  27. 27

    Vitillaro E.: Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149, 155–182 (1999)

  28. 28

    Wang Y.: Finite time blow-up and global solutions for fourth order damped wave equations. J. Math. Anal. Appl. 418(2), 713–733 (2014)

  29. 29

    Wu, S.T.: Blow-up of solutions for an integro-differential equation with a nonlinear source. Electron. J. Differ. Equ. 2006(45), 1–9 (2006)

  30. 30

    Wu, S.T., Lin, C.Y.: Global nonexistence for an integro-differential equation. Math. Methods Appl. Sci. 35(1), 72–83

  31. 31

    Zhou Y.: A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in \({\Omega}\) . Appl. Math. Lett. 18, 281–286 (2005)

  32. 32

    Zuazua E.: Exponential decay for the semi-linear wave equation with locally distributed damping. Commun. Partial Differ. Equ. 15, 205–235 (1990)

Download references

Author information

Correspondence to Mohammad Kafini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kafini, M., Messaoudi, S.A. A Blow-Up Result in a Nonlinear Wave Equation with Delay. Mediterr. J. Math. 13, 237–247 (2016). https://doi.org/10.1007/s00009-014-0500-4

Download citation

Mathematics Subject Classification

  • 35B37
  • 35L55
  • 74D05
  • 93D15
  • 93D20

Keywords

  • Nonlinear source
  • delay time
  • wave system
  • blowup