Advertisement

Mediterranean Journal of Mathematics

, Volume 12, Issue 3, pp 1085–1094 | Cite as

On Reverse Minkowski-Type Inequalities

  • Chang-Jian ZhaoEmail author
  • Wing-Sum Cheung
Article

Abstract

In this article, we first establish improvements of the classical Pólya-Szegö inequality. As applications, we prove reverse Minkowski-type inequalities for convex and star bodies.

Keywords

Pólya-Szegö inequality Minkowski inequality reverse Minkowski inequality 

Mathematics Subject Classification

52A30 52A40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barthe F.: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, 335–361 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Burago, Y.D., Zalgaller, V.A.: (1988) Geometric inequalities, Springer, BerlinGoogle Scholar
  4. 4.
    Busemann, H.: Convex surfaces, Interscience, New York (1958)Google Scholar
  5. 5.
    Gardner, R.J.: Geometric tomography, Cambridge Univ. Press, New York (1996)Google Scholar
  6. 6.
    Gardner R.J., Koldobsky A., Schlumprecht T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. 149, 691–703 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gardner R.J., Hug D., Weil W.: Operations between sets in geometry. J. Eur. Math. Soc (JEMS). 15, 2297–2352 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Haberl C.: L p intersection bodies. Adv. Math. 217, 2599–2624 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Haberl, C., Ludwig, M.: A characterization of L p intersection bodies. Int. Math. Res. Not. Art. ID 10548, pp. 29 (2006)Google Scholar
  10. 10.
    Haberl C., Schuster F.E.: General L p affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Haberl C., Schuster F.E., Xiao J.: An asymmetric affine Pólya-Szegö principle. Math. Ann. 352, 517–542 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Haberl C., Parapatits L.: The Centro-Affine Hadwiger Theorem. J. Am. Math. Soc. 27, 685–705 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hardy, G.H., Littlewood, J.E., Pólya, inequalities, Cambridge Univ. Press, Cambridge, UK (1934)Google Scholar
  14. 14.
    Kuperberg G.: From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18, 870–892 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ludwig M.: Intersection bodies and valuations. Am. J. Math. 128, 1409–1428 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ludwig M., Reitzner M.: A classification of SL(n) invariant valuations. Ann. Math. 172, 1223–1271 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lutwak E.: Dual mixed volumes. Pacific J. Math. 58, 531–538 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lutwak E.: The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lutwak E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lutwak E.: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lutwak E., Yang D., Zhang G.: On the L p-Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lutwak E., Yang D., Zhang G.: L p John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lutwak E., Yang D., Zhang G.: The Brunn-Minkowski-Firey inequality for nonconvex sets. Adv. Appl. Math. 48, 407–413 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lutwak E., Yang D., Zhang G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lutwak E., Yang D., Zhang G.: Volume inequalities for isotropic measures. Am. J. Math. 129, 1711–1723 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Maresch G., Schuster F.E.: The sine transform of isotropic measures. Int. Math. Res. Not. 2012, 717–739 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Parapatits L.: SL(n)-Covariant L p-Minkowski Valuations. J. Lond. Math. Soc. 89, 397–414 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Parapatits L.: SL(n)-Contravariant L p-Minkowski valuations, Trans. Am. Math. Soc. 366, 1195–1211 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schneider, R.: Convex bodies: the Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge (1993)Google Scholar
  30. 30.
    Schneider, R.: Boundary structure and curvature of convex bodies, Contributions to Geometry, Birkhäuser, Basel. 13–59 (1979)Google Scholar
  31. 31.
    Schuster F.E., Weberndorfer M.: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263–283 (2012)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Schuster F.E.: Valuations and Busemann-Petty type problems. Adv. Math. 219, 344–368 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Weberndorfer M.: Shadow systems of asymmetric L p zonotopes. Adv. Math. 240, 613–635 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhao C.J., Leng G.S.: Brunn-Minkowski inequality for mixed intersection bodies. J. Math. Anal. Appl. 301, 115–123 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhuang Y.: On inverses of the Hölder inequality. J. Math. Anal. Appl. 161, 566–575 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsChina Jiliang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of MathematicsThe University of Hong KongHong KongHong Kong

Personalised recommendations