Mediterranean Journal of Mathematics

, Volume 12, Issue 3, pp 1085–1094 | Cite as

On Reverse Minkowski-Type Inequalities

  • Chang-Jian ZhaoEmail author
  • Wing-Sum Cheung


In this article, we first establish improvements of the classical Pólya-Szegö inequality. As applications, we prove reverse Minkowski-type inequalities for convex and star bodies.


Pólya-Szegö inequality Minkowski inequality reverse Minkowski inequality 

Mathematics Subject Classification

52A30 52A40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barthe F.: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, 335–361 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Burago, Y.D., Zalgaller, V.A.: (1988) Geometric inequalities, Springer, BerlinGoogle Scholar
  4. 4.
    Busemann, H.: Convex surfaces, Interscience, New York (1958)Google Scholar
  5. 5.
    Gardner, R.J.: Geometric tomography, Cambridge Univ. Press, New York (1996)Google Scholar
  6. 6.
    Gardner R.J., Koldobsky A., Schlumprecht T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. 149, 691–703 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gardner R.J., Hug D., Weil W.: Operations between sets in geometry. J. Eur. Math. Soc (JEMS). 15, 2297–2352 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Haberl C.: L p intersection bodies. Adv. Math. 217, 2599–2624 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Haberl, C., Ludwig, M.: A characterization of L p intersection bodies. Int. Math. Res. Not. Art. ID 10548, pp. 29 (2006)Google Scholar
  10. 10.
    Haberl C., Schuster F.E.: General L p affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Haberl C., Schuster F.E., Xiao J.: An asymmetric affine Pólya-Szegö principle. Math. Ann. 352, 517–542 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Haberl C., Parapatits L.: The Centro-Affine Hadwiger Theorem. J. Am. Math. Soc. 27, 685–705 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hardy, G.H., Littlewood, J.E., Pólya, inequalities, Cambridge Univ. Press, Cambridge, UK (1934)Google Scholar
  14. 14.
    Kuperberg G.: From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18, 870–892 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ludwig M.: Intersection bodies and valuations. Am. J. Math. 128, 1409–1428 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ludwig M., Reitzner M.: A classification of SL(n) invariant valuations. Ann. Math. 172, 1223–1271 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lutwak E.: Dual mixed volumes. Pacific J. Math. 58, 531–538 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lutwak E.: The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lutwak E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lutwak E.: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lutwak E., Yang D., Zhang G.: On the L p-Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lutwak E., Yang D., Zhang G.: L p John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lutwak E., Yang D., Zhang G.: The Brunn-Minkowski-Firey inequality for nonconvex sets. Adv. Appl. Math. 48, 407–413 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lutwak E., Yang D., Zhang G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lutwak E., Yang D., Zhang G.: Volume inequalities for isotropic measures. Am. J. Math. 129, 1711–1723 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Maresch G., Schuster F.E.: The sine transform of isotropic measures. Int. Math. Res. Not. 2012, 717–739 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Parapatits L.: SL(n)-Covariant L p-Minkowski Valuations. J. Lond. Math. Soc. 89, 397–414 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Parapatits L.: SL(n)-Contravariant L p-Minkowski valuations, Trans. Am. Math. Soc. 366, 1195–1211 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schneider, R.: Convex bodies: the Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge (1993)Google Scholar
  30. 30.
    Schneider, R.: Boundary structure and curvature of convex bodies, Contributions to Geometry, Birkhäuser, Basel. 13–59 (1979)Google Scholar
  31. 31.
    Schuster F.E., Weberndorfer M.: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263–283 (2012)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Schuster F.E.: Valuations and Busemann-Petty type problems. Adv. Math. 219, 344–368 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Weberndorfer M.: Shadow systems of asymmetric L p zonotopes. Adv. Math. 240, 613–635 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhao C.J., Leng G.S.: Brunn-Minkowski inequality for mixed intersection bodies. J. Math. Anal. Appl. 301, 115–123 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhuang Y.: On inverses of the Hölder inequality. J. Math. Anal. Appl. 161, 566–575 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsChina Jiliang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of MathematicsThe University of Hong KongHong KongHong Kong

Personalised recommendations