Advertisement

Mediterranean Journal of Mathematics

, Volume 10, Issue 4, pp 1685–1696 | Cite as

Complete Monotonicity of a Difference Between the Exponential and Trigamma Functions and Properties Related to a Modified Bessel Function

  • Feng QiEmail author
  • Christian Berg
Article

Abstract

In the paper, the authors find necessary and sufficient conditions for a difference between the exponential function αe β/t , α, β > 0, and the trigamma function ψ′(t) to be completely monotonic on (0, ∞). While proving the complete monotonicity, the authors discover some properties related to the first order modified Bessel function of the first kind I 1, including inequalities, monotonicity, unimodality, and convexity.

Mathematics Subject Classification (2010)

Primary 26A48 33C10 Secondary 26A51 33B10 33B15 44A10 

Keywords

Complete monotonicity difference trigamma function exponential function necessary and sufficient condition inequality monotonicity convexity unimodality modified Bessel function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Washington, 1970.Google Scholar
  2. 2.
    A. Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc. Edinburgh Math. Soc. 53 (2010), 575–599; Available online at http://dx.doi.org/10.1017/S0013091508001016.
  3. 3.
    Biernacki M, KrzyŻ J: On the monotonity of certain functionals in the theory of analytic functions. Annales Univ. Mariae Curie-Skłodowska A 9, 135–147 (1955)Google Scholar
  4. 4.
    B.-N. Guo and F. Qi, Refinements of lower bounds for polygamma functions, Proc. Amer. Math. Soc. (2012), in press; Available online at http://dx.doi.org/10.1090/S0002-9939-2012-11387-5.
  5. 5.
    E. K. Ifantis and P. D. Siafarikas, Inequalities involving Bessel and modified Bessel functions, J. Math. Anal. Appl. 147 (1990), no. 1, 214–227; Available online at http://dx.doi.org/10.1016/0022-247X(90)90394-U.
  6. 6.
    S. Koumandos and H. L. Pedersen, On the asymptotic expansion of the logarithm of Barnes triple Gamma function, Math. Scand. 105 (2009), no. 2, 287–306.Google Scholar
  7. 7.
    Y. L. Luke, Inequalities for generalized hypergeometric functions, J. Approx. Theory 5 (1972), no. 1, 41–65; Available online at http://dx.doi.org/10.1016/0021-9045(72)90028-7.
  8. 8.
    D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.Google Scholar
  9. 9.
    Ponnusamy S, Vuorinen M: Asymptotic expansions and inequalities for hypergeometric functions. Mathematika 44, 278–301 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    F. Qi andB.-N. Guo, Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic, Adv. Appl. Math. 44 (2010), no. 1, 71–83; Available online at http://dx.doi.org/10.1016/j.aam.2009.03.003.
  11. 11.
    F. Qi and B.-N. Guo, Refinements of lower bounds for polygamma functions, available online at http://arxiv.org/abs/0903.1966.
  12. 12.
    F. Qi and A. Sofo, An alternative and united proof of a double inequality for bounding the arithmetic-geometric mean, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 71 (2009), no. 3, 69–76.Google Scholar
  13. 13.
    F. Qi and S.-H. Wang, Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions, available online at http://arxiv.org/abs/1210.2012.
  14. 14.
    R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions, de Gruyter Studies in Mathematics 37, De Gruyter, Berlin, Germany, 2010.Google Scholar
  15. 15.
    Widder D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)Google Scholar
  16. 16.
    X.-J. Zhang, F. Qi and W.-H. Li, Properties of three functions relating to the exponential function and the existence of partitions of unity, Int. J. Open Probl. Comput. Sci. Math. 5 (2012), no. 3, 122–127.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.College of MathematicsInner Mongolia University for NationalitiesTongliao CityChina
  2. 2.Department of MathematicsUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations