Mediterranean Journal of Mathematics

, Volume 10, Issue 1, pp 147–156 | Cite as

On the Oscillation of nth Order Dynamic Equations on Time-Scales



We present some new criteria for the oscillation of even order dynamic equation
$$\left(a(t)({x^\Delta}^{n-1}(t))^\alpha\right)^\Delta +q(t)(x^\sigma(t))^\lambda = 0$$
on an unbounded above time scale \({\mathbb{T}}\), where α and λ are the ratios of positive odd integers, a and q is a real valued positive rd-continuous functions defined on \({\mathbb{T}}\).

Mathematics Subject Classification (2010)

Primary 34K11 Secondary 93C70 


Oscillation nth order dynamic equation time-scale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal R.P., Bohner M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)MathSciNetMATHGoogle Scholar
  2. 2.
    Bohner M., Peterson A.: Dynamic Equations on Time-Scales: An Introduction with Applications. Birkhäuser, Boston (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Chen D.X.: Oscillation and asymptotic behavior for nth order nonlinear neutral delay dynamic equations on time scales. Acta Appl. Math. 109, 703–719 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Erbe L., Baoguo J., Peterson A.: Oscillation of nth order superlinear dynamic equations on time scales. Rocky Mountain J. Math. 41, 471–491 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    L. Erbe, B. Karpuz and A. Peterson, Kamenev-type oscillation criteria for higher order neuyral delay dynamic equations. Int. J. Difference Equ. (to appear).Google Scholar
  6. 6.
    Grace S.R., Bohner M., Agarwal R.P.: On the oscillation of second order half linear dynamic equations. J. Difference Equ. Appl. 15, 451–460 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Grace S.R., Agarwal R.P., Bohner M., O’Regan S.D.: Oscillation of second order strongly superlinear and strongly sublinear dynamic equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3463–3471 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hardy G.H., Littlewood I.E., Polya G.: Inequalities. University Press, Cambridge (1959)Google Scholar
  9. 9.
    Hilger S.: Analysis on measure chain-a unified approach to contiguous and discrete calculus. Results Math. 18, 18–56 (1990)MathSciNetMATHGoogle Scholar
  10. 10.
    Karpuz B.: Asymptotic behavior of bounded solutions of a class of higher-order neutral dynamic equations. Appl. Math. Comput. 215, 2174–2183 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Karpuz B.: Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients. Electron. J. Qual. Theory Differ. Equ. 9, 1–14 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Engineering Mathematics, Faculty of EngineeringCairo UniversityOrman, GizaEgypt

Personalised recommendations