Mediterranean Journal of Mathematics

, Volume 10, Issue 1, pp 289–311 | Cite as

Strong Regularizing Effect of a Gradient Term in the Heat Equation with a Weight

  • Boumediene Abdellaoui
  • Yasmina Nasri
  • Ana PrimoEmail author


We deal with the following parabolic problem,
$$(P)\left\{\begin{array}{lll} u_t - \Delta{u} + |\nabla{u}|^q \quad=\quad \lambda{g}(x)u + f(x, t),\quad u > 0 \; {\rm in} \; \Omega \; \times \; (0, T),\\ \qquad\quad\quad\; u(x, t) \quad=\quad 0 \quad{\rm on}\; {\partial}{\Omega}\; \times ; (0, T),\\ \qquad\quad\quad\; u(x, 0) \quad=\quad u_{0}(x), \quad x \in {\Omega},\end{array}\right.$$
where Open image in new window is a bounded regular domain or \({\Omega = \mathbb{R}^N}\) , \({1 < q \leq 2, \lambda > 0\; {\rm and}\; f \geq 0, u_{0} \geq 0}\) are in a suitable class of functions. We give assumptions on g with respect to q for which for all λ >  0 and all \({f \in L^1(\Omega_T ), f \geq 0}\) , problem (P) has a positive solution.

Under some additional conditions on the data, the Cauchy problem and the asymptotic behavior of the solution are also considered.

Mathematics Subject Classification (2010)

35D05 35D10 35J20 35J25 35J70 46E30 46E35 


Semilinear heat equations with gradient term regularization comparison arguments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdellaoui B., Peral I., Primo A.: Optimal results for parabolic problems arising in some physical models with critical growth in the gradient respect to a Hardy potential. Adv. Math. 225(6), 2967–3021 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Abdellaoui B., Peral I., Primo A.: Strong regularizing effect of a gradient term in the heat equation with the hardy potential. J. Funct. Anal. 258(4), 1247–1272 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Abdellaoui B., Peral I., Primo A.: Breaking of resonance and regularizing effect of a first order quasi-linear term in some elliptic equations. Ann. Inst. H. Poincarè Anal. Non Linèaire 25(5), 969–985 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Alaa N.E., Pierre M.: Weak solutions of some quasilinear elliptic equations with data measures. SIAM J. Math. Anal. 24, 23–35 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Antoci F.: Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces. Ricerche Mat. 52(1), 55–71 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aronson D.G., Serrin J.: Local Behavior of Solutions of Quasilinear Parabolic Equations. Arch. Rational Mech. Anal. 25, 81–122 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ben-Artzi A., Souplet P., Weissler F.B.: The local theory for the viscous Hamilton-Jacobi equations in Lebesgue spaces. J. Math. Pure. Appl. 9(81), 343–378 (2002)MathSciNetGoogle Scholar
  8. 8.
    Baras P., Goldstein J.A.: The heat equation with a singular potential. Trans. Amer. Math. Soc. 284(1), 121–139 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Blanchard D.: Truncation and monotonicity methods for parabolic equations, Nonlinear Analysis. T.M.A. 21(10), 725–743 (1993)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Blanchard D., Murat F.: Renormalised solutions of nonlinear parabolic problems with L 1 data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A 127(6), 1137–1152 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Boccardo L., Dall’Aglio A., Gallouët T., Orsina L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147(1), 237–258 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Boccardo L., Gallouët T., Orsina L.: Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. 73, 203–223 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Boccardo L., Murat F., Puel J.P.: Existence results for some quasilinear parabolic equations. Nonlinear Anal. TMA 13(40), 373–392 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dall’Aglio A.: Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 170(4), 207–240 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dall’Aglio A., Giachetti D., Puel J.P.: Nonlinear parabolic equations with natural growth in general domains. Differential and Integral Equations, 20(4), 361–396 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Giachetti D., Porzio M.M.: Elliptic equations with degenerate coercivity: gradient regularity. Acta Math. Sin. (Engl. Ser.) 19(2), 349–370 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gilding B., Guedda M., Kersner R.: The Cauchy problem for \({u_t - \Delta{u} = |\nabla{u}|^q}\) , J. Math. Anal. Appl. 284, 733–755 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Krug J., Spohn H.: Universality classes for deterministic surface growth. Phys. Rev. A(3) 38, 4271–4283 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations, Potential Anal. 19 (2003), no. 2, 99–161.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Math. Monographs 23, Providence (1968).Google Scholar
  21. 21.
    Pierre M.: Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14(3), 522–533 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Prignet A.: Existence and uniqueness of entropy solution of parabolic problems with L 1 data, . Nonlinear Anal T.M.P. 28(12), 1943–1954 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Boumediene Abdellaoui
    • 1
  • Yasmina Nasri
    • 1
  • Ana Primo
    • 2
    Email author
  1. 1.Dèpartement de MathèmatiquesUniversitè Aboubekr Belkaïd, TlemcenTlemcenAlgeria
  2. 2.ICMAT (Instituto de Ciencias Matemáticas)MadridSpain

Personalised recommendations