Mediterranean Journal of Mathematics

, Volume 9, Issue 3, pp 453–485 | Cite as

A Filippov’s Theorem, Some Existence Results and the Compactness of Solution Sets of Impulsive Fractional Order Differential Inclusions

Article

Abstract

In this paper, we first present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form,
$$\begin{array}{lll} \quad \qquad D^{\alpha}_{*}y(t) & \in & F(t, y(t)), \quad\; {\rm a.e.}\ t\, \in \, J{\backslash} \{t_{1}, \ldots, t_{m}\}, \ \alpha\, \in \, (0,1], \\ y(t^{+}_{k}) - y(t^{-}_{k}) & = & I_{k}(y(t^{-}_{k})), \quad k = 1, \ldots, m, \\ \qquad \qquad y(0) & = & a,\end{array}$$
where J = [0, b], \({D^{\alpha}_{*}}\) denotes the Caputo fractional derivative and F is a set-valued map. The functions Ikcharacterize the jump of the solutions at impulse points tk (\({k = 1, \ldots , m}\)). In addition, several existence results are established, under both convexity and nonconvexity conditions on the multivalued right-hand side. The proofs rely on a nonlinear alternative of Leray-Schauder type and on Covitz and Nadler’s fixed point theorem for multivalued contractions. The compactness of solution sets is also investigated.

Mathematics Subject Classification (2010)

34A60 34A37 

Keywords

Fractional differential inclusions fractional derivative fractional integral Caputo fractional derivatives impulsive differential inclusions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.P. Agarwal, M. Benchohra and J..J. Nieto and A. Ouahab, Fractional Differential Equations and Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, in press.Google Scholar
  2. 2.
    Agarwal R.P., Benchohra M., Slimani B.A.: Existence results for differential equations with fractional order and impulses. Mem. Differential Equations Maths. Phys. 44, 1–21 (2008)MathSciNetMATHGoogle Scholar
  3. 3.
    Agur Z., Cojocaru L., Mazaur G., Anderson R.M., Danon Y.L.: Pulse mass measles vaccination across age cohorts. Proc. Nat. Acad. Sci. USA. 90, 11698–11702 (1993)CrossRefGoogle Scholar
  4. 4.
    J. P. Aubin, Impulse Differential Inclusions and Hybrid Systems: A Viability Approach, Lecture Notes, Universit Paris-Dauphine, (2002).Google Scholar
  5. 5.
    J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.Google Scholar
  6. 6.
    Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhauser, Boston (1990)MATHGoogle Scholar
  7. 7.
    Bai Z., Lu H.: Positive solutions for boundary value problem of nonlinear fractional differential equations. J. Math. Anal. Appl. 311, 495–505 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood, Chichister, 1989.Google Scholar
  9. 9.
    M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Contemporay Mathematics and Its Applications, Hindawi, New York, 2006.Google Scholar
  10. 10.
    Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for fractional functional differential inclusions with infinite delay and application to control theory. Fract. Calc. Appl. Anal. 11, 35–56 (2008)MathSciNetMATHGoogle Scholar
  12. 12.
    M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969.Google Scholar
  13. 13.
    Caputo M.: Linear models of dissipation whose Q is almost frequency independent, Part II., Geophys. J. R. Astr. Soc. 13, 529–529 (1967)CrossRefGoogle Scholar
  14. 14.
    Caputo M., Mainardi F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II.) 1, 161–198 (1971)CrossRefGoogle Scholar
  15. 15.
    C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 580 1977.Google Scholar
  16. 16.
    Covitz H., Nadler S.B. Jr.: Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5–11 (1970)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York (1992)MATHCrossRefGoogle Scholar
  18. 18.
    Diethelm K., Ford N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in “Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties” (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217–224, Springer-Verlag, Heidelberg, 1999.Google Scholar
  20. 20.
    Diethelm K., Walz G.: Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16, 231–253 (1997)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    El-Sayed A.M.A., Ibrahim A.G.: Multivalued fractional differential equations. Appl. Math. Comput. 68, 15–25 (1995)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Frankowska H.: A priori estimates for operational differential inclusions. J. Differential Equations 84, 100–128 (1990)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Gaul L., Klein P., Kempfle S.: Damping description involving fractional operators. Mech. Systems Signal Processing 5, 81–88 (1991)CrossRefGoogle Scholar
  24. 24.
    Glockle W.G., Nonnenmacher T.F.: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)CrossRefGoogle Scholar
  25. 25.
    L.Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and Its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.Google Scholar
  26. 26.
    Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York (2003)MATHGoogle Scholar
  27. 27.
    A. Halanay and D. Wexler, Teoria calitativa a systeme cu impulduri, Editura Republicii Socialiste Romania, Bucharest, 1968.Google Scholar
  28. 28.
    Henderson J., Ouahab A.: Fractional functional differential inclusions with finite delay. Nonlin. Anal. 70(5), 2091–2105 (2009)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Henderson J., Ouahab A.: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 59, 1191–1226 (2010)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Henderson J., Ouahab A.: On the solutions sets for first order impulsive neutral functional differential inclusions in Banach spaces. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18, 53–114 (2011)MathSciNetMATHGoogle Scholar
  31. 31.
    Henry D.: Geometric Theory of Semilinear Parabolic Partial differential Equations. Springer-Verlag, Berlin-New York (1989)Google Scholar
  32. 32.
    Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.Google Scholar
  33. 33.
    A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V. Amsterdam, 2006.Google Scholar
  34. 34.
    Kilbas A.A., Trujillo J.J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81, 435–493 (2002)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.Google Scholar
  36. 36.
    Kruger-Thiemr E.: Formal theory of drug dosage regiments. I.. J. Theoret. Biol. 13, 212–235 (1966)CrossRefGoogle Scholar
  37. 37.
    Kruger-Thiemr E.: Formal theory of drug dosage regiments II.. J. Theoret. Biol. 23, 169–190 (1969)CrossRefGoogle Scholar
  38. 38.
    Lakshmikantham V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.Google Scholar
  40. 40.
    F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanis, in “Fractals and Fractional Calculus in Continuum Mechanics” (A. Carpinteri and F. Mainardi, Eds), pp, 291-348, Springer-Verlag, Wien, 1997.Google Scholar
  41. 41.
    Metzler F., Schick W., Kilian H.G., Nonnenmacher T.F.: Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)CrossRefGoogle Scholar
  42. 42.
    Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)MATHGoogle Scholar
  43. 43.
    V. D. Milman and A. A. Myshkis, Randorn impulses in linear dynamical systems, in “Approximante Methods for Solving Differential Equations,” Publishing house of the Academy of Sciences of Ukainian SSR, Kiev, (1963), 64–81, in Russian.Google Scholar
  44. 44.
    V. D. Milman and A. A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J. 1 (1960), 233–237, in Russian.Google Scholar
  45. 45.
    Momani S.M., Hadid S.B.: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24, 37–44 (2003)MathSciNetMATHGoogle Scholar
  46. 46.
    S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. (2004), 697–701.Google Scholar
  47. 47.
    J. Musielak, Introduction to Functional Analysis, (in Polish). PWN, Warszawa 1976.Google Scholar
  48. 48.
    Nakhushev A.M.: The Sturm-Liouville problems for a second order ordinary equations with fractional derivatives in the lower order. Dokl. Akad. Nauk SSSR 234, 308–311 (1977)MathSciNetGoogle Scholar
  49. 49.
    Ouahab A.: Some results for fractional boundary value problem of differential inclusions. Nonlin. Anal. 69, 3877–3896 (2008)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    A. Ouahab, Filippov’s theorem for impulsive differential inclusions with fractional order, Electron. J. Qual. Theory Differ. Equ., Spec, Ed. I 2009, No. 23, 23 page.Google Scholar
  51. 51.
    S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Lecture Notes in Mathematics, 954, Springer-Verlag, 1982.Google Scholar
  52. 52.
    Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  53. 53.
    Podlubny I., Petraš I., Vinagre B.M., O’Leary P., Dorčak L.: Analogue realizations of fractional-order controllers. Fractional order calculus and its applications. Nonlinear Dynam. 29, 281–296 (2002)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yverdon (1993)MATHGoogle Scholar
  55. 55.
    Samoilenko A.M., Perestyuk N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)MATHGoogle Scholar
  56. 56.
    A.A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer, Dordrecht, The Netherlands, 2000.Google Scholar
  57. 57.
    Yu C., Gao G.: Existence of fractional differential equations. J. Math. Anal. Appl. 310, 26–29 (2005)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Zhu Q.J.: On the solution set of differential inclusions in Banach Space. J. Differential Equations 93(2), 213–237 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsBaylor UniversityWacoUSA
  2. 2.Laboratory of MathematicsSidi-Bel-Abbès UniversitySidi-Bel-AbbèsAlgeria

Personalised recommendations