A Filippov’s Theorem, Some Existence Results and the Compactness of Solution Sets of Impulsive Fractional Order Differential Inclusions
Article
First Online:
Received:
Revised:
Accepted:
Abstract
In this paper, we first present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form,
where J = [0, b], \({D^{\alpha}_{*}}\) denotes the Caputo fractional derivative and F is a set-valued map. The functions Ikcharacterize the jump of the solutions at impulse points tk (\({k = 1, \ldots , m}\)). In addition, several existence results are established, under both convexity and nonconvexity conditions on the multivalued right-hand side. The proofs rely on a nonlinear alternative of Leray-Schauder type and on Covitz and Nadler’s fixed point theorem for multivalued contractions. The compactness of solution sets is also investigated.
$$\begin{array}{lll} \quad \qquad D^{\alpha}_{*}y(t) & \in & F(t, y(t)), \quad\; {\rm a.e.}\ t\, \in \, J{\backslash} \{t_{1}, \ldots, t_{m}\}, \ \alpha\, \in \, (0,1], \\ y(t^{+}_{k}) - y(t^{-}_{k}) & = & I_{k}(y(t^{-}_{k})), \quad k = 1, \ldots, m, \\ \qquad \qquad y(0) & = & a,\end{array}$$
Mathematics Subject Classification (2010)
34A60 34A37Keywords
Fractional differential inclusions fractional derivative fractional integral Caputo fractional derivatives impulsive differential inclusionsPreview
Unable to display preview. Download preview PDF.
References
- 1.R.P. Agarwal, M. Benchohra and J..J. Nieto and A. Ouahab, Fractional Differential Equations and Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, in press.Google Scholar
- 2.Agarwal R.P., Benchohra M., Slimani B.A.: Existence results for differential equations with fractional order and impulses. Mem. Differential Equations Maths. Phys. 44, 1–21 (2008)MathSciNetMATHGoogle Scholar
- 3.Agur Z., Cojocaru L., Mazaur G., Anderson R.M., Danon Y.L.: Pulse mass measles vaccination across age cohorts. Proc. Nat. Acad. Sci. USA. 90, 11698–11702 (1993)CrossRefGoogle Scholar
- 4.J. P. Aubin, Impulse Differential Inclusions and Hybrid Systems: A Viability Approach, Lecture Notes, Universit Paris-Dauphine, (2002).Google Scholar
- 5.J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.Google Scholar
- 6.Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhauser, Boston (1990)MATHGoogle Scholar
- 7.Bai Z., Lu H.: Positive solutions for boundary value problem of nonlinear fractional differential equations. J. Math. Anal. Appl. 311, 495–505 (2005)MathSciNetMATHCrossRefGoogle Scholar
- 8.D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood, Chichister, 1989.Google Scholar
- 9.M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Contemporay Mathematics and Its Applications, Hindawi, New York, 2006.Google Scholar
- 10.Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 11.Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for fractional functional differential inclusions with infinite delay and application to control theory. Fract. Calc. Appl. Anal. 11, 35–56 (2008)MathSciNetMATHGoogle Scholar
- 12.M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969.Google Scholar
- 13.Caputo M.: Linear models of dissipation whose Q is almost frequency independent, Part II., Geophys. J. R. Astr. Soc. 13, 529–529 (1967)CrossRefGoogle Scholar
- 14.Caputo M., Mainardi F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II.) 1, 161–198 (1971)CrossRefGoogle Scholar
- 15.C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 580 1977.Google Scholar
- 16.Covitz H., Nadler S.B. Jr.: Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5–11 (1970)MathSciNetMATHCrossRefGoogle Scholar
- 17.Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York (1992)MATHCrossRefGoogle Scholar
- 18.Diethelm K., Ford N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 19.K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in “Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties” (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217–224, Springer-Verlag, Heidelberg, 1999.Google Scholar
- 20.Diethelm K., Walz G.: Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16, 231–253 (1997)MathSciNetMATHCrossRefGoogle Scholar
- 21.El-Sayed A.M.A., Ibrahim A.G.: Multivalued fractional differential equations. Appl. Math. Comput. 68, 15–25 (1995)MathSciNetMATHCrossRefGoogle Scholar
- 22.Frankowska H.: A priori estimates for operational differential inclusions. J. Differential Equations 84, 100–128 (1990)MathSciNetMATHCrossRefGoogle Scholar
- 23.Gaul L., Klein P., Kempfle S.: Damping description involving fractional operators. Mech. Systems Signal Processing 5, 81–88 (1991)CrossRefGoogle Scholar
- 24.Glockle W.G., Nonnenmacher T.F.: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)CrossRefGoogle Scholar
- 25.L.Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and Its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.Google Scholar
- 26.Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York (2003)MATHGoogle Scholar
- 27.A. Halanay and D. Wexler, Teoria calitativa a systeme cu impulduri, Editura Republicii Socialiste Romania, Bucharest, 1968.Google Scholar
- 28.Henderson J., Ouahab A.: Fractional functional differential inclusions with finite delay. Nonlin. Anal. 70(5), 2091–2105 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 29.Henderson J., Ouahab A.: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 59, 1191–1226 (2010)MathSciNetMATHCrossRefGoogle Scholar
- 30.Henderson J., Ouahab A.: On the solutions sets for first order impulsive neutral functional differential inclusions in Banach spaces. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18, 53–114 (2011)MathSciNetMATHGoogle Scholar
- 31.Henry D.: Geometric Theory of Semilinear Parabolic Partial differential Equations. Springer-Verlag, Berlin-New York (1989)Google Scholar
- 32.Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.Google Scholar
- 33.A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V. Amsterdam, 2006.Google Scholar
- 34.Kilbas A.A., Trujillo J.J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81, 435–493 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 35.M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.Google Scholar
- 36.Kruger-Thiemr E.: Formal theory of drug dosage regiments. I.. J. Theoret. Biol. 13, 212–235 (1966)CrossRefGoogle Scholar
- 37.Kruger-Thiemr E.: Formal theory of drug dosage regiments II.. J. Theoret. Biol. 23, 169–190 (1969)CrossRefGoogle Scholar
- 38.Lakshmikantham V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 39.V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.Google Scholar
- 40.F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanis, in “Fractals and Fractional Calculus in Continuum Mechanics” (A. Carpinteri and F. Mainardi, Eds), pp, 291-348, Springer-Verlag, Wien, 1997.Google Scholar
- 41.Metzler F., Schick W., Kilian H.G., Nonnenmacher T.F.: Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)CrossRefGoogle Scholar
- 42.Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)MATHGoogle Scholar
- 43.V. D. Milman and A. A. Myshkis, Randorn impulses in linear dynamical systems, in “Approximante Methods for Solving Differential Equations,” Publishing house of the Academy of Sciences of Ukainian SSR, Kiev, (1963), 64–81, in Russian.Google Scholar
- 44.V. D. Milman and A. A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J. 1 (1960), 233–237, in Russian.Google Scholar
- 45.Momani S.M., Hadid S.B.: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24, 37–44 (2003)MathSciNetMATHGoogle Scholar
- 46.S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. (2004), 697–701.Google Scholar
- 47.J. Musielak, Introduction to Functional Analysis, (in Polish). PWN, Warszawa 1976.Google Scholar
- 48.Nakhushev A.M.: The Sturm-Liouville problems for a second order ordinary equations with fractional derivatives in the lower order. Dokl. Akad. Nauk SSSR 234, 308–311 (1977)MathSciNetGoogle Scholar
- 49.Ouahab A.: Some results for fractional boundary value problem of differential inclusions. Nonlin. Anal. 69, 3877–3896 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 50.A. Ouahab, Filippov’s theorem for impulsive differential inclusions with fractional order, Electron. J. Qual. Theory Differ. Equ., Spec, Ed. I 2009, No. 23, 23 page.Google Scholar
- 51.S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Lecture Notes in Mathematics, 954, Springer-Verlag, 1982.Google Scholar
- 52.Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
- 53.Podlubny I., Petraš I., Vinagre B.M., O’Leary P., Dorčak L.: Analogue realizations of fractional-order controllers. Fractional order calculus and its applications. Nonlinear Dynam. 29, 281–296 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 54.Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yverdon (1993)MATHGoogle Scholar
- 55.Samoilenko A.M., Perestyuk N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)MATHGoogle Scholar
- 56.A.A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer, Dordrecht, The Netherlands, 2000.Google Scholar
- 57.Yu C., Gao G.: Existence of fractional differential equations. J. Math. Anal. Appl. 310, 26–29 (2005)MathSciNetMATHCrossRefGoogle Scholar
- 58.Zhu Q.J.: On the solution set of differential inclusions in Banach Space. J. Differential Equations 93(2), 213–237 (1991)MathSciNetMATHCrossRefGoogle Scholar
Copyright information
© Springer Basel AG 2011