Mediterranean Journal of Mathematics

, Volume 9, Issue 1, pp 225–238 | Cite as

An Integral Version of Ćirić’s Fixed Point Theorem

Article

Abstract

We establish a new fixed point theorem for mappings satisfying a general contractive condition of integral type. The presented theorem generalizes the well known Ćirić’s fixed point theorem [Lj. B. Ćirić, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (26) (1971) 19-26]. Some examples and applications are given.

Mathematics Subject Classification (2010)

47H10 54H25 

Keywords

Complete metric space λ-generalized contraction fixed point contractive condition of integral type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Altun, D. Türkoğlu and B. E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type. Fixed Point Theory Appl. 2007 (2007), article ID 17301, 9 pages.Google Scholar
  2. 2.
    Banach S.: Sur les opérations dans les ensembles absraites et leurs applications. Fund. Math. 3, 133–181 (1922)MATHGoogle Scholar
  3. 3.
    Boyd D.W., Wong J.S.: On nonlinear contractions. Proc. Amer. Math. Soc. 20, 458–464 (1969)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Branciari A.: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29, 531–536 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ćirić Lj.B.: Generalized contractions and fixed point theorems. Publ. Inst. Math. 12, 19–26 (1971)Google Scholar
  6. 6.
    Ćirić Lj.B.: Fixed points for generalized multi-valued mappings. Mat. Vesnik. 9, 265–272 (1972)MathSciNetGoogle Scholar
  7. 7.
    Ćirić Lj.B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45, 267–273 (1974)MathSciNetMATHGoogle Scholar
  8. 8.
    Ćirić Lj.B.: On a family of contractive maps and fixed points. Publ. Inst. Math. 17, 45–51 (1974)Google Scholar
  9. 9.
    Ćirić Lj.B.: Coincidence and fixed points for maps on topological spaces. Topol. Appl. 154, 3100–3106 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Ćirić Lj.B.: Fixed point theorems for multi-valued contractions in complete metric spaces. J. Math. Anal. Appl. 348, 499–507 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ćirić Lj.B.: Non-self mappings satisfying nonlinear contractive condition with applications. Nonlinear Anal. 71, 2927–2935 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Jungck G.: Commuting mappings and fixed points. Amer. Math. Monthly 73, 261–263 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jungck G., Rhoades B.E.: Fixed point theorems for occasionally weakly compatible mappings. Fixed Point Theory 7, 286–296 (2006)MathSciNetGoogle Scholar
  14. 14.
    Meir A., Keeler E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Rhoades B.E.: Two fixed point theorems for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 63, 4007–4013 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Samet B.: A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type. Int. Journal of Math. Anal. 3, 1265–1271 (2009)MathSciNetMATHGoogle Scholar
  17. 17.
    B. Samet and H. Yazidi, An extension of Banach fixed point theorem for mappings satisfying a contractive condition of integral type. J. Nonlinear Sci. Appl., in press.Google Scholar
  18. 18.
    T. Suzuki, Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007 (2007), article ID 39281, 6 pages.Google Scholar
  19. 19.
    Vetro C.: On Branciari’s theorem for weakly compatible mappings. Appl. Math. Lett. 23, 700–705 (2010)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Vijayaraju P., Rhoades B.E., Mohanraj R.: A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 15, 2359–2364 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Ecole supérieure des Sciences et Techniques de Tunis, Département de Mathématiquesbab menaraTunisie
  2. 2.Department of Mathematics and InformaticsUniversity of PalermoPalermoItaly

Personalised recommendations