Mediterranean Journal of Mathematics

, Volume 7, Issue 4, pp 553–563 | Cite as

On Orlicz-Power Series Spaces



In this manuscript, we investigate the isomorphisms of Orlicz-Köthe sequence spaces and quasidiagonal isomorphisms of Cartesian products of Orlicz-power series spaces.

Mathematics Subject Classification (2010)

Primary 46A45 Secondary 46B45 


Orlicz-Köthe sequence spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Crone, W.B. Robinson : Every nuclear Fréchet space with a regular basis has the quasi-equivalence property, Studia Math. 52, 203-207,(1974/75).Google Scholar
  2. 2.
    Djakov P.B., Önal S., Terzioğlu T., Yurdakul M.: Strictly Singular Operators and Isomorphism of Cartesian Products of Power Series Spaces. Arch. Math 70, 57–65 (1998)CrossRefGoogle Scholar
  3. 3.
    Djakov P.B., Ramanujan M.S.: Multipliers Between Orlicz Sequence Spaces. Turk J. Math. 24, 313–319 (2000)MATHMathSciNetGoogle Scholar
  4. 4.
    P.B. Djakov, T. Terzioğlu, M. Yurdakul, V. Zahariuta : Bounded operators and complemented subspaces of Cartesian products, Math. Nachrichten, to appear.Google Scholar
  5. 5.
    M.M. Dragilev : Basis in Köthe spaces,(in Russian), Rostov State University, Rostov-on-Don (1983,2003).Google Scholar
  6. 6.
    Jarchow H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)MATHGoogle Scholar
  7. 7.
    Karapınar E., Yurdakul M., Zahariuta V.P.: Isomorphisms of Cartesian products of -power series spaces. Bull. Polish Acad. Sci. Math. 54(2), 103–111 (2006)MATHCrossRefGoogle Scholar
  8. 8.
    Krasnoselskii M.A., Rutickii Ya.B.: Convex Functions and Orlicz Spaces. Noorhoff Ltd., Groningen (1961)Google Scholar
  9. 9.
    Lindberg K.: On Subspaces of Orlicz Sequence Spaces. Studia Mathematica 45, 119–146 (1973)MATHMathSciNetGoogle Scholar
  10. 10.
    Lindenstrauss J., Tzafriri L.: On Orlicz sequence spaces. Israel J. Math. 10, 379–390 (1971)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces I,II, Springer, Berlin (1977, 1979).Google Scholar
  12. 12.
    Meise R., Vogt D.: Introduction to Functional Analysis. Springer, Berlin (1997)MATHGoogle Scholar
  13. 13.
    Mityagin B.S.: Sur l’equivalence des bases inconditional dans les echelles de Hilbert. C. R. Acad. Sci., Paris 269, 426–428 (1969)MATHGoogle Scholar
  14. 14.
    Mityagin B.S.: The equivalence of bases in Hilbert scales, (in Russian). Studia Math. 37, 111–137 (1970)MathSciNetGoogle Scholar
  15. 15.
    Mityagin B.S.: Non-Schwartzian power series spaces. Math. Z. 182(3), 303–310 (1983)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ramanujan M.S., Terzioğlu T.: Power series spaces Λk(α) of finite type and related nuclearities. Studia Math. 53(1), 1–13 (1975)MATHMathSciNetGoogle Scholar
  17. 17.
    Vogt D.: Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist. J. reine angew. Math. 345, 182–200 (1983)MATHMathSciNetGoogle Scholar
  18. 18.
    Zahariuta V.P.: On the isomorphism of Cartesian products of locally convex spaces. Studia Math 46, 201–221 (1973)MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsAtilim UniversityAnkaraTurkey
  2. 2.Faculty of Engineering and Natural SciencesSabanci UniversityİstanbulTurkey

Personalised recommendations