Linear Spectral Transformations and Laurent Polynomials

Article

Abstract

In this manuscript we analyze some linear spectral transformations of a Hermitian linear functional using the multiplication by some class of Laurent polynomials. We focus our attention in the behavior of the Verblunsky parameters of the perturbed linear functional. Some illustrative examples are pointed out.

Mathematics Subject Classification (2000)

Primary 42C05 Secondary 15A23 

Keywords

Quasi-definite linear functionals Laurent polynomials linear spectral transformations Hessenberg matrices Verblunsky parameters 

References

  1. 1.
    Bueno M.I., Marcellán F.: Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bueno M.I., Marcellán F.: Polynomial perturbations of bilinear functionals and Hessenberg matrices. Linear Algebra Appl. 414, 64–83 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M.J. Cantero, Polinomios ortogonales sobre la circunferencia unidad. Modificaciones de los parámetros de Schur (in Spanish), Doctoral Dissertation, Universidad de Zaragoza, 1997.Google Scholar
  4. 4.
    Daruis L., Hernández J., Marcellán F.: Spectral transformations for Hermitian Toeplitz matrices. J. Comput. Appl. Math. 202, 155–176 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. Garza, J. Hernández and F. Marcellán, Orthogonal polynomials and measures on the unit circle. The Geronimus transformations, J. Comput. Appl. Math., in press.Google Scholar
  6. 6.
    L. Garza and F. Marcellán, Verblunsky parameters and linear spectral transformations, submitted.Google Scholar
  7. 7.
    Geronimus Ya.L.: Polynomials orthogonal on a circle and their applications. Amer. Math. Soc. Transl. 1, 1–78 (1962)Google Scholar
  8. 8.
    Godoy E., Marcellán F.: An analog of the Christoffel formula for polynomial modification of a measure on the unit circle. Boll. Un. Mat. Ital. (7) 5, 1–12 (1991)MATHGoogle Scholar
  9. 9.
    Godoy E., Marcellán F.: Orthogonal polynomials and rational modifications of measures. Canad. J. Math. 45, 930–943 (1993)MATHMathSciNetGoogle Scholar
  10. 10.
    Grenander U., Szegő G.: Toeplitz Forms and their Applications, 2nd edition. Chelsea Publishing Co, New York (1984)MATHGoogle Scholar
  11. 11.
    Ismail M.E.H., Ruedemann R.W.: Relation between polynomials orthogonal on the unit circle with respect to different weights. J. Approx. Theory 71, 39–60 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jones W.B., Njåstad O., Thron W.J.: Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle. Bull. London Math. Soc. 21, 113–152 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Kailath, and B. Porat, State-space generators for orthogonal polynomials, in Prediction Theory and Harmonic Analysis, North-Holland, Amsterdam-New York, 1983, 131–163.Google Scholar
  14. 14.
    Li X., Marcellán F.: Representations of orthogonal polynomials for modified measures. Commun. Anal. Theory of Contin. Fract. 7, 9–22 (1999)Google Scholar
  15. 15.
    F. Marcellán, Nonstandard orthogonal polynomials. Aplications in numerical analysis and approximation theory (in Spanish), Rev. Acad. Colombiana Cienc. Exact. Fís. y Natur. 30 (no. 117) (2006), 563–579.Google Scholar
  16. 16.
    Marcellán F., Hernández J.: Christoffel transforms and Hermitian linear functionals. Mediterr. J. Math. 2, 451–458 (2005)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Simon, Orthogonal polynomials on the unit circle, Part 2, American Mathematical Society Colloquium Publications 54 Part 2, American Mathematical Society, Providence, RI, 2005.Google Scholar
  18. 18.
    C. Suárez, Polinomios ortogonales relativos a modificaciones de funcionales regulares y hermitianos (in Spanish), Doctoral Dissertation, Universidad de Vigo, 1993.Google Scholar
  19. 19.
    G. Szegő, Orthogonal Polynomials, 4th edition, American Mathematical Society, Colloquium Publications, vol. XXIII, American Mathematical Society, Providence, R. I., 1975.Google Scholar
  20. 20.
    L.Wong, Generalized bounded variation and inserting point masses, Constr. Approx., in press.Google Scholar
  21. 21.
    Yoon G.J.: Darboux transforms and orthogonal polynomials. Bull. Korean Math. Soc. 39, 359–376 (2002)MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain
  2. 2.Universidad Autónoma de TamaulipasMatamorosMéxico
  3. 3.Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations