Advertisement

The Riemann Curvature Tensor and Higgs Scalar Field within CAM Theory

  • Brian Jonathan WolkEmail author
Article
  • 28 Downloads

Abstract

The composition algebra based methodology (CAM) (Wolk in Pap Phys 9:090002, 2017, Phys Scr 94:025301, 2019, Adv Appl Clifford Algebras 27(4):3225, 2017, J Appl Math Phys 6:1537, 2018, Phys Scr 94:105301, 2019) has previously been shown to generate the pre-Higgs Standard Model Lagrangian. In this paper the symmetry of general covariance is incorporated into CAM. The Riemann curvature tensor thereby arises, from which gravity-field Lagrangians are constructed. A Higgs-like scalar field coupled to the spacetime metric tensor also manifests.

Keywords

Gravity Principle of general covariance Principle of equivalence General Relativity Standard Model Higgs field Division algebras 

Notes

References

  1. 1.
    Ablamowicz, R., Sobczyk, G.: Lectures on Clifford (Geometric) Algebras and Applications. Birkhauser, Boston (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Baez, J.: The octonions. Bull. Am. Math Soc. 39(2), 145 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baez, J., Huerta, J.: The strangest numbers in string theory. Sci. Am. 304, 60 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Baez, J., Muniain, J.P.: Gauge Fields, Knots and Gravity. World Scientific Publishing Co. Pte. Ltd., Hackensack (2013)zbMATHGoogle Scholar
  5. 5.
    Belishev, M.I., Vakulenko, A.F.: On algebras of harmonic quaternion fields in \(\mathbb{R}^{3}\). arXiv:1710.00577v3 [math.FA] (2017)
  6. 6.
    Bergmann, P.G.: Introduction to the Theory of Relativity. Dover Publications Inc, New York (1976)Google Scholar
  7. 7.
    Bisht, P.S.: Split octonion electrodynamics and unified fields of dyons. In: 4th Conference on Nuclear and Particle Physics (2003)Google Scholar
  8. 8.
    Brown, R., Hopkins, N.: Noncommutative matrix Jordan algebras. Trans. Am. Math. Soc. 333(1), 137 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Castro, C.: On the noncommutative and nonassociative geometry of octonionic spacetime, modified dispersion relations and grand unification. J. Math. Phys. 48, 073517 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Collins, P.D.B., Martin, A.D., Squires, E.J.: Particle Physics and Cosmology. Wiley, New York (1989)CrossRefGoogle Scholar
  11. 11.
    Conway, J.H., Smith, D.A.: On Quaternions and Octonions. CRC Press, Boca Raton (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Conway, J.H., Smith, D.A.: On Quaternions and Octonions: their Geometry, Arithmetic and Symmetry. CRC Press, Boca Raton (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Daboul, J., Dabourgo, L.: Matrix representation of octonions and generalizations. J. Math. Phys. 40, 4134 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dray, T., Manogue, C.A.: The Geometry of the Octonions. World Scientific Publishing Co., Ptc. Ltd., New Jersey (2015)zbMATHCrossRefGoogle Scholar
  15. 15.
    D’Inverno, R.: Introducing Einstein’s Relativity. Clarendon Press, Oxford (1992)zbMATHGoogle Scholar
  16. 16.
    Einstein, A.: The foundation of general relativity. Annalen der Physik 49, 769–822 (1916)ADSCrossRefGoogle Scholar
  17. 17.
    Einstein, A.: Relativity: The Special and General Theory. Methuen & Co., Ltd, London (1916)zbMATHCrossRefGoogle Scholar
  18. 18.
    Einstein, A.: Physics and reality. J. Frankl. Inst. 221, 349–382 (1936)ADSCrossRefGoogle Scholar
  19. 19.
    Einstein, A.: Autobiographical notes, reprinted in S Hawking. In: A Stubbornly Persistent Illusion, The Essential Scientific Works of Albert Einstein. Running Press Book Publishers, Philadelphia (2007)Google Scholar
  20. 20.
    Einstein, A.: Jahrb. Radioakt. 4, 411 (1907)Google Scholar
  21. 21.
    Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  22. 22.
    Ferraris, M., et al.: Do nonlinear metric theories of gravitation really exist? Class. Quantum Gravity 5, L95 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Folomeshkin, V.N.: The quadratic Lagrangians in general relativity. Commun. Math. Phys. 22, 115 (1971)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Frankel, T.: Gravitational Curvature, An Introduction to Einstein’s Theory. W.H. Freeman & Co., San Francisco (1979)zbMATHGoogle Scholar
  25. 25.
    Girard, P.R.: The quaternion group and modern physics. Eur. J. Phys. 5, 25 (1984)CrossRefGoogle Scholar
  26. 26.
    Griffiths, D.: Introduction to Elementary Particles, 2nd edn. Wiley-VCH, Weinheim (2008)zbMATHGoogle Scholar
  27. 27.
    Hay, G.E.: Vector & Tensor Analysis. Dover Publications, Inc., New York (1953)zbMATHGoogle Scholar
  28. 28.
    Hooft, G.T.: Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B 33, 167–188 (1971)CrossRefGoogle Scholar
  29. 29.
    Hovis, R.C., Kragh, H.: PAM Dirac and the beauty of physics. Sci. Am. 268(5), 104 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    Hurwitz, A.: Nachr. Ges. Wiss. Göttingen 309 (1898)Google Scholar
  31. 31.
    Kane, G.: String Theory and the Real World. Morgan & Claypool Publishers, San Rafeal (2017)zbMATHCrossRefGoogle Scholar
  32. 32.
    Krishnaswami, G.S., Sachdev, S.: Algebra and geometry of Hamilton’s quaternions. Resonance J. Sci. Educ. 21(6), 529 (2016)Google Scholar
  33. 33.
    Lounesto, P.: Octonions and triality. Adv. Appl. Clifford Algebras 11(2), 191 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Maia, M.D.: Geometry of the Fundamental Interactions. Springer Science+Business Media, LLC, New York (2011)zbMATHCrossRefGoogle Scholar
  35. 35.
    Maiani, L.: Electroweak Interactions. CRC Press, Boca Raton (2016)zbMATHGoogle Scholar
  36. 36.
    Mukhanov, V.F., Winitzki, S.: Introduction to Quantum Effects in Gravity. Cambridge University Press, New York (2007)zbMATHCrossRefGoogle Scholar
  37. 37.
    Nissani, N.: Quadratic Lagrangian for general relativity theory. Phys. Rev. D 31, 1489 (1985)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Okubo, S.: Introduction to Octonion and Other Non-associative Algebras in Physics, Montroll Memorial Lecture Series in Mathematical Physics 2. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  39. 39.
    Pauli, W.: Theory of Relativity. Dover Publications Inc., New York (1958)zbMATHGoogle Scholar
  40. 40.
    Peebles, P.J.E.: Quantum Mechanics. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  41. 41.
    Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2d edn. Princeton University Press, Princeton (2013)zbMATHCrossRefGoogle Scholar
  42. 42.
    Quigg, C.: Unanswered questions in electroweak theory. arXiv:0905.3187v2, Theoretical Physics Dept., Fermi National Accelerator Laboratory, Batavia (2009)
  43. 43.
    Quigg, C.: Electroweak symmetry in historical perspective. arXiv:1503.01756v3, Theoretical Physics Dept., Fermi National Accelerator Laboratory, Batavia (2015)
  44. 44.
    Quigg, C.: Spontaneous symmetry breaking as a basis for particle mass. arXiv:0704.2232v2, Theoretical Physics Dept., Fermi National Accelerator Laboratory, Batavia (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Ramond, P.: Group Theory—A Physicist’s Survey. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  46. 46.
    Robinson, M.: Symmetry and the Standard Model. Springer Science+Business Media, LLC, New York (2011)zbMATHCrossRefGoogle Scholar
  47. 47.
    Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics, Part II. Springer Science+Business Media, Dordrecht (2017)zbMATHCrossRefGoogle Scholar
  48. 48.
    Schafer, R.D.: On the algebras formed by the Cayley–Dickson process. Am. J. Math. 76, 435 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Schafer, R.D.: An Introduction to Non-associative Algebras. Dover Publications, New York (1995)Google Scholar
  50. 50.
    Scharf, G.: Gauge Field Theories: Spin One and Spin Two. Dover Publications Inc, New York (2016)Google Scholar
  51. 51.
    Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)Google Scholar
  52. 52.
    Schwichtenberg, J.: Physics from Symmetry. Springer International Publishing, Cham (2015)zbMATHCrossRefGoogle Scholar
  53. 53.
    Springer, T.A., Veldkamp, F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  54. 54.
    Stephenson, G.: Quadratic Lagrangians and general relativity. Nuovo Cim. 9, 263 (1958)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Suh, T.: Algebras formed by the Zorn vector matrix. Pac. J. Math. 30(1), 255–258 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Tanabashi, M. et al. (Particle Data Group): Review of particle physics: status of Higgs boson physics. Phys. Rev. D 98, 030001 (2018)Google Scholar
  57. 57.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)zbMATHCrossRefGoogle Scholar
  58. 58.
    Walecka, J.D.: Introduction to General Relativity. World Scientific Publishing Co., Hackensack (2007)zbMATHCrossRefGoogle Scholar
  59. 59.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  60. 60.
    Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, New York (2005)zbMATHGoogle Scholar
  61. 61.
    Wigner, E.P.: Symmetries and Reflections. Indiana University Press, Bloomington (1967)Google Scholar
  62. 62.
    Witten, E.: Reflections on the fate of spacetime. Phys. Today 49(4), 24 (1996)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Wolk, B.: An alternative derivation of the Dirac operator generating intrinsic Lagrangian local gauge invariance. Pap. Phys. 9, 090002 (2017)CrossRefGoogle Scholar
  64. 64.
    Wolk, B.: On an intrinsically local gauge symmetric SU(3) field theory for quantum chromodynamics. Adv. Appl. Clifford Algebras 27(4), 3225 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Wolk, B.: Addendum to on an intrinsically local gauge symmetric SU(3) field theory for quantum chromodynamics. J. Appl. Math. Phys. 6, 1537 (2018)CrossRefGoogle Scholar
  66. 66.
    Wolk, B.: An alternative formalism for generating pre-Higgs SU(2) x U(1) electroweak unification that intrinsically accommodates SU(2) left-chiral asymmetry. Phys. Scr. 94, 025301 (2019)ADSCrossRefGoogle Scholar
  67. 67.
    Wolk, B.: The division algebraic constraint on gauge mediated proton decay. Phys. Scr. 94, 105301 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TallahasseeUSA

Personalised recommendations