\(\varvec{(m,h)}\)-Monogenic Functions Related to Axially Symmetric Helmholtz Equations

  • Doan Cong DinhEmail author


In this paper we introduce a new type of Vekua’s equation in Clifford analysis. There are two directions of this topic: The theory of h-regular functions was investigated by E. Obolashvili and the theory k-hypermonogenic functions has been developed by H. Leutwiler, S.-L. Eriksson and their co-workers. These two theories are investigated independently. We introduce a combination of them in a united form.


Clifford analysis h-regular functions k-hypermonogenic functions Generalized monogenic functions Generalized Cauchy kernel Integral representation of solutions Axially symmetric Helmholtz equation 

Mathematics Subject Classification

30A05 30G30 30G35 15A66 35A08 



The author would like to express his sincere gratitude to the Anonymous Referees for their useful comments to improve this paper.


  1. 1.
    Abreu-Blaya, R., Bory-Reyes, J., Brackx, F., De Schepper, H., Sommen, F.: Boundary value problems associated to a Hermitian Helmholtz equation. J. Math. Anal. Appl. 389(2), 1268–1279 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bahmann, H., Gürlebeck, K., Shapiro, M., Sprössig, W.: On a modified teodorescu transform. Integral Transforms Spec. Funct. 12(3), 213–226 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Begehr, H., Zhongxiang, Z., Ha, V.T.N.: Generalized integral representations in Clifford analysis. Complex Var. Elliptic Equ. 51(8–11), 745–762 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berglez, P.: Representation of Pseudoanalytic Functions in the Space. In More Progresses in Analysis, pp. 1119–1126. World Scientific, Singapore (2008)zbMATHGoogle Scholar
  5. 5.
    Bers, L.: Theory of Pseudo-analytic Functions. New York University, New York (1953)zbMATHGoogle Scholar
  6. 6.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Research Notes in Mathematics, vol. 76. Pitman (Advanced Publishing Program), Boston (1982)zbMATHGoogle Scholar
  7. 7.
    Delgado, B.B., Kravchenko, V.V.: Clifford algebras. Adv. Appl. 29, 40 (2019)Google Scholar
  8. 8.
    Dinh, D.C.: Representation of Weinstein \(k\)-monogenic functions by differential operators. Complex Anal. Oper. TheoryGoogle Scholar
  9. 9.
    Eriksson, S.-L.: A hyperbolic Dirac operator and its kernels. Complex Var. Elliptic Equ. 9(58), 767–781 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Eriksson, S.-L., Leutwiler, H.: Contributions to the theory of hypermonogenic functions. Complex Var. Elliptic Equ. 51(5–6), 547–561 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Eriksson, S.-L., Orelma, H.: Hyperbolic Laplace operator and the Weinstein equation in \({\mathbb{R}}^3\). Complex Var. Elliptic Equ. 24(1), 109–124 (2014)Google Scholar
  12. 12.
    Eriksson, S.-L., Orelma, H.: Fundamental solution of \(k-\)hyperbolic harmonic functions in odd spaces. J. Phys. Conf. Ser 597(1), 012–034 (2015)Google Scholar
  13. 13.
    Eriksson, S.-L., Orelma, H.: On \(k-\)hypermonogenic functions and their mean value properties. Complex Anal. Oper. Theory 10(2), 311–325 (2016)Google Scholar
  14. 14.
    Garipov, I.B., Mavlyaviev, R.M.: Fundamental solution of a multidimensional axisymmetric equation. Complex Var. Elliptic Equ. 63(9), 1290–1305 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gürlebeck, K.: Hypercomplex factorization of the Helmholtz equation. Z. Anal. Anwend. 5, 125–131 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hasanov, A.: Fundamental solutions of generalized bi-axially symmetric Helmholtz equation. Complex Var. Elliptic Equ. 52(8), 673–683 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Korenev, B.G.: Bessel Functions and Their Applications, Analytical Methods and Special Functions. Taylor & Francis Ltd, Boca Raton (2002)zbMATHGoogle Scholar
  18. 18.
    Kravchenko, V.V.: Applied Pseudoanalytic Functions Theory. Frontiers in Mathematics. Birkhäuser, Basel (2009)CrossRefGoogle Scholar
  19. 19.
    Kumar, D.: Growth estimates of entire function solutions of generalized bi-axially symmetric Helmholtz equation. Int. J. Adv. Res. Math. 8, 12–26 (2017)CrossRefGoogle Scholar
  20. 20.
    Mavlyaviev, R.M., Garipov, I.B.: Fundamental solution of multidimensional axisymmetric Helmholtz equation. Complex Var. Elliptic Equ. 62(3), 287–296 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    McIntosh, A., Mitrea, M.: Clifford algebras and Maxwell’s equations in Lipschitz domains. Math. Methods Appl. Sci. 22, 1599–1620 (1999)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Obolashvili, E.: Partial Differential Equations in Clifford Analysis. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 96. Longman, Harlow (1998)Google Scholar
  23. 23.
    Salakhitdinov, M.S., Hasanov, A.: The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation. Eurasian Math. J. 3(4), 99–110 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Srivastava, H.M., Hasanov, A., Choi, J.: Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. Sohag J. Math. Int. J. 2(1), 1–10 (2015)Google Scholar
  25. 25.
    Vekua, I.N.: Generalized Analytic Functions. Pergamon Press, London (1962)zbMATHGoogle Scholar
  26. 26.
    Vuojamo, V., Eriksson, S.-L.: Integral kernels for \(k-\)hyper-monogenic functions. Complex Var. Elliptic Equ. 62(9), 1254–1265 (2017)Google Scholar
  27. 27.
    Weinacht, R.J.: Fundamental solutions for a class of equations with several singular coefficients. Austrul. Math. Sot. 8, 575–583 (1968)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhenyuan, X.: A function theory for the operator \(D-\lambda \). Complex Vari. Elliptic Equ. 16, 37–42 (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Applied Mathematics and InformaticsHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations