Advertisement

On Pauli’s Theorem in the Clifford Algebra \({\varvec{R}}_\mathbf{1,3 } \)

  • S. P. Kuznetsov
  • V. V. Mochalov
  • V. P. ChuevEmail author
Article
  • 84 Downloads

Abstract

In this article, in the Clifford algebra \(R_{1,3}\), we investigated Pauli’s theorem. An algorithm for constructing Pauli’s operator is given. It is shown that the problem of constructing Pauli’s operator is related to the problem of zero divisor in Clifford algebras. Pauli’s operators for generating a basis composed of elements of of first, third or mixed rank are found.

Keywords

A Clifford algebra Pauli’s theorem Zero divisor Inverse operators 

Notes

References

  1. 1.
    Lounesto, P.: Clifford Algebras and Spinors, p. 346p. Cambridge University Press, Cambridge (2011)Google Scholar
  2. 2.
    Marchuk, N.G.: Demonstration performance and tensor products of Clifford algebra. Proc. Steklov Inst. Math. VA Steklov 290, 154–165 (2015)zbMATHGoogle Scholar
  3. 3.
    Marchuk, N.G., Marchuk, N.G.: Equations of field theory and Clifford algebras, p. 304. RKhD, Moscow (2009)Google Scholar
  4. 4.
    Marchuk, N.G., Shirokov, D.S.: Introduction to the theory of Clifford algebras, p. 590. Moskva, Fazis (2012)Google Scholar
  5. 5.
    Shirokov D.S.: Method of generalized Reynolds operators and Pauli’s theorem in Clifford algebras (2016). arxiv: 1409.8163 v2 [math-ph]
  6. 6.
    Shirokov, D.S.: Extension of Pauli’s theorem to Clifford algebras. Dokl. Math. 84(2), 699–701 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shirokov, D.S.: The generalization of the Pauli theorem to the case of Clifford algebras. Nanostruct. Math. Phys. Model. 9(1), 93–104 (2013)Google Scholar
  8. 8.
    Shirokov, D.S.: Pauli theorem in the description of n-dimensional spinors in the Clifford algebra formalism. Theoret. Math. Phys. 175(1), 454–474 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shirokov, D.S.: The use of the generalized Paulis theorem for odd elements of Clifford algebra to analyze relations between spin and orthogonal groups of arbitrary dimensions. Vestn. Samar. Gos. Tekhn. Univ Ser. Fiz-Mat. Nauki 1 30, 279–287 (2013)CrossRefGoogle Scholar
  10. 10.
    Shirokov, D.S.: Calculations of elements of spin groups using generalized Pauli’s theorem. Adv. Appl. Clifford Algebras 25(1), 227–244 (2015). arXiv 14, 092, 449MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. P. Kuznetsov
    • 1
  • V. V. Mochalov
    • 1
  • V. P. Chuev
    • 1
    Email author
  1. 1.CheboksaryRussia

Personalised recommendations