A Right Inverse Operator for \({\text {curl}}+\lambda \) and Applications

  • Briceyda B. Delgado
  • Vladislav V. KravchenkoEmail author


A general solution of the equation \({\text {curl}}\,\vec {w}+\lambda \vec {w}=\vec {g},\,\lambda \in \mathbb {C},\,\lambda \ne 0\) is obtained for an arbitrary bounded domain \(\Omega \subset \mathbb {R}^{3}\) with a Liapunov boundary and \(\vec {g}\in W^{p,{\text {div}}}\left( \Omega \right) =\left\{ \vec {u}\in L^{p}\left( \Omega \right) :\,{\text {div}}\,\vec {u}\in L^{p}\left( \Omega \right) ,\,1<p<\infty \right\} \). The result is based on the use of classical integral operators of quaternionic analysis. Applications of the main result are considered to a Neumann boundary value problem for the equation \({\text {curl}}\,\vec {w}+\lambda \vec {w}=\vec {g}\) as well as to the nonhomogeneous time-harmonic Maxwell system for achiral and chiral media.


Div-curl system Monogenic functions Helmholtz equation Metaharmonic conjugate function Neumann boundary value problem Maxwell equations 

Mathematics Subject Classification

30G20 30G35 35Q60 



  1. 1.
    Athanasiadis, C., Costakis, G., Stratis, I.G.: Transmission problems in contrasting chiral media. Rep. Math. Phys. 53, 143–156 (2004)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Athanasiadis, C., Costakis, G., Stratis, I.G.: Electromagnetic scattering by a perfectly conduncting obstacle in a homogeneous chiran environment: solvability and low frequency theory. Math. Methods Appl. Sci. 25, 927–944 (2002)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Babich, V.M., Kapilevich, M.B., Mikhlin, S.G., Natanson, G.I., Riz, P.M., Slobodetskij, L.N., Smirnov, M.M.: Linear equations of mathematical physics. Nauka, Moscow (1964). (in Russian)Google Scholar
  4. 4.
    Boulmezaoud, T.-Z., Maday, Y., Amari, T.: On the linear force-free fields in bounded and unbounded three-dimensional domains. ESAIM Math. Model. Numer. Anal. 33, 359–393 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Colton, D., Kress, R.: Integral equations methods in scattering theory. Wiley, New York (1983)zbMATHGoogle Scholar
  6. 6.
    Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Springer, New York (1992)CrossRefGoogle Scholar
  7. 7.
    Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 3. Springer, New York (1985)zbMATHGoogle Scholar
  8. 8.
    Delgado, B.B., Porter, R.M.: General solution of the inhomogeneous div-curl system and consequences. Adv. Appl. Clifford Algebras 27, 3015–3037 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Delgado, B.B., Porter, R.M.: Hilbert transform for the three-dimensional Vekua equation. Complex Variables and Elliptic Equations (2018).
  10. 10.
    Gürlebeck, K., Sprößig, W.: Quaternionic analysis and elliptic boundary value problems. Birkhäuser Verlag, Berlin (1990)CrossRefGoogle Scholar
  11. 11.
    Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford calculus for physicists and engineers. Wiley, Chichester (1997)zbMATHGoogle Scholar
  12. 12.
    Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic functions in the plane and n-dimensional space. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  13. 13.
    Gürlebeck, K., Habetha, K., Sprößig, W.: Application of holomorphic functions in two and higher dimensions. Birkhäuser, Basel (2016)CrossRefGoogle Scholar
  14. 14.
    Jaggard, D.L., Mickelson, A.R., Papas, C.H.: On electromagnetic waves in chiral media. Appl. Phys. 18, 211–216 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    Khmelnytskaya, K .V., Kravchenko, V .V., Oviedo, H.: Quaternionic integral representations for electromagnetic fields in chiral media. Telecommun. Radio Eng. 56(4 & 5), 53–61 (2001)Google Scholar
  16. 16.
    Kravchenko, V. V.: On the relation between holomorphic biquaternionic functions and time-harmonic electromagnetic fields. Deposited in UkrINTEI, 29.12.1992; # 2073 - Uk - 92; 18pp. (in Russian)Google Scholar
  17. 17.
    Kravchenko, V.V.: Applied quaternionic analysis. Heldermann Verlag, Lemgo (2003)zbMATHGoogle Scholar
  18. 18.
    Kravchenko, V .V.: On force free magnetic fields. Quaternionic approach. Math. Methods Appl. Sci. 28, 379–386 (2005)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kravchenko, V. V., Shapiro, M. V.: Helmholtz operator with a quaternionic wave number and associated function theory. Deformations of Mathematical Structures . II. Ed. by J. Lawrynovicz, Kluwer Acad. Publ., 101–128 (1994)Google Scholar
  20. 20.
    Kravchenko, V.V., Shapiro, M.V.: Integral representations for spatial models of mathematical physics. Addison Wesley Longman Ltd, Harlow (1996)zbMATHGoogle Scholar
  21. 21.
    Kress, R.: A remark on a boundary value problem for force-free fields. Z. Angew. Math. Phys. 28, 715–722 (1977)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kress, R.: The treatment of a Neumann boundary value problem for force-free fields by an integral equation method. Proc. R. Soc. Edinburgh 82A, 71–86 (1978)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kress, R.: A boundary integral equation method for a Neumann boundary problem for force-free fields. Z. J. Eng. Math. 15(1), 29–48 (1981)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lakhtakia, A., Varadan, V.K., Varadan, V.V.: Time-harmonic electromagnetic fields in chiral media. Lecture Notes in Physics 355. Springer, Berlin (1989)Google Scholar
  25. 25.
    Mitrea, M.: The method of layer potentials in electro-magnetic scattering theory on non-smooth domains. Duke Math. J. 77(1), 111–133 (1995)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mitrea, M.: The method of layer potentials for electromagnetic waves in chiral media. Forum Mathematicum 13(3), 423–446 (2001)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mitrea, M.: Boundary value problems for Dirac operators and Maxwell’s equations in nonsmooth domains. Math. Methods Appl. Sci. 25(16–18), 1355–1369 (2002)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Müller, C.: Foundations of the mathematical theory of electromagnetic waves. Springer, Berlin (1969)CrossRefGoogle Scholar
  29. 29.
    Ola, P.: Boundary integral equations for the scattering of electromagnetic waves by a homogeneous chiral obstacle J. Math. Phys., 3969–3980 (1994)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Roach, G.F., Stratis, I.G., Yannacopoulos, A.N.: Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics. Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ (2012)CrossRefGoogle Scholar
  31. 31.
    Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Phil. Soc. 85, 99–225 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Regional Mathematical Center of Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations