On Paravectors and Their Associated Algebras

  • Jayme VazJr.Email author
Part of the following topical collections:
  1. Homage to Prof. W.A. Rodrigues Jr


Some algebraic structures that can be defined on the spaces of paravectors and k-paravectors are studied. Firstly, a version of the exterior and interior products resembling those in the exterior algebra of k-vectors but according to the k-paravector grading is defined. Secondly, a new Clifford algebra is constructed from the operations of exterior and interior products of paravectors and k-paravectors such that if the original vector space has a metric of signature (n, 0), then the metric of this new Clifford algebras has a metric of signature (1, n). The noticeable difference between this new Clifford algebra and usual ones is the necessity of the conjugation operation in its definition. Thirdly, since the space of k-paravectors is not an invariant space under the Clifford product by a paravector, another product is defined in such a way to make the space of k-paravectors invariant under this product by a paravector. The algebra defined by this product is shown to be a DKP algebra.


Paravector Clifford algebra DKP algebra 

Mathematics Subject Classification

15A66 15A75 81R05 



We gratefully acknowledge the support of a research grant from FAPESP—process 2016/21370-9. We are also grateful to Prof. Stephen Mann for reading the manuscript, discussions and suggestions, and to the University of Waterloo for the hospitality during our stay as visiting professor.


  1. 1.
    Baylis, W.E.: Special relativity with \(2\times 2\) matrices. Am. J. Phys. 48, 918–925 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    Baylis, W.E.: The Pauli-algebra approach to special relativity. J. Phys. A 22, 1–15 (1989)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Baylis, W.E.: The paravector model of spacetime. In: Baylis, W.E. (ed.) Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering, pp. 237–252. Birkhauser, Boston (1996)CrossRefGoogle Scholar
  4. 4.
    Baylis, W.E.: Geometry of Paravector Space with Applications to Relativistic Physics. In: Jim, B. (ed.) Computational Noncommutative Algebra with Applications, pp. 363–387. Academic Publishers, Kluwer (2004)zbMATHGoogle Scholar
  5. 5.
    Bourbaki, N.: Éléments de Mathématique, Algèbre, Chapitre 9. Hermann, Paris (1959), reprinted by Springer-Verlag Berlin Heidelberg (2007)Google Scholar
  6. 6.
    Chevalley, C.: The Algebraic Theory of Spinors. Columbia University Press (1954), reprinted as The Algebraic Theory of Spinors and Clifford Algebras, Collected Works, vol. 4. Springer, Berlin (1997)Google Scholar
  7. 7.
    Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Springer Science+Business Media, Dordrecht (1990)CrossRefGoogle Scholar
  8. 8.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. The Morgan Kaufmann Series in Computer Graphics. Elsevier, Amsterdam (2007)Google Scholar
  9. 9.
    Duffin, R.J.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114–1114 (1938)ADSCrossRefGoogle Scholar
  10. 10.
    Ferreira, M., Ren, B.: Möbius gyrogroups: a Clifford algebra approach. J. Algebra 328, 230–253 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Friedrich, T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence (2000)CrossRefGoogle Scholar
  12. 12.
    Garling, D.J.H.: Clifford Algebras: An Introduction. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  13. 13.
    Helmstetter, J., Micali, A.: The graded structure of nondegenerate meson algebras. Adv. Appl. Clifford Alg. 18, 197–236 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Helmstetter, J., Micali, A.: Quadratic Mappings and Clifford Algebras. Birkhäuser Verlag AG, Basel (2008)zbMATHGoogle Scholar
  15. 15.
    Helmstetter, J., Micali, A.: About the structure of meson algebras. Adv. Appl. Clifford Alg. 20, 617–629 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kemmer, N.: The particle aspect of meson theory. Proc. Royal Soc. A 173, 91–116 (1939)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  18. 18.
    Maks, J. G.: Modulo (1,1) periodicity of Clifford algebras and generalized (anti-)Möbus transformations. PhD Thesis, TU Delft (1989).
  19. 19.
    Meinrenken, E.: Clifford Algebras and Lie Theory. Springer-Verlag, Berlin Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Petiau, G.: (1936). Contribution à la théorie des équations d’ondes corpusculaires. University of Paris thesis (1936), published in Acad. Roy. de Belg., A. Sci. Mem. Collect., 16(2), 118Google Scholar
  21. 21.
    Porteous, I.: Topological Geometry, 2nd edn. Cambridge University Press, Cambridge (1981)CrossRefGoogle Scholar
  22. 22.
    Porteous, I.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  23. 23.
    Umezawa, H.: Quantum Field Theory. North-Holland Publishing Co, Amsterdam (1956)zbMATHGoogle Scholar
  24. 24.
    Vaz Jr., J.: The Clifford algebra of physical space and Dirac theory. Eur. J. Phys. 37, 055407 (2016)CrossRefGoogle Scholar
  25. 25.
    Vaz Jr., J.: The Clifford algebra of physical space and Elko spinors. Int. J. Theor. Phys. 57, 582–601 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vaz Jr., J., Mann, S.: Paravectors and the geometry of 3D euclidean space. Adv. Appl. Clifford Algebras 28, 99 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vaz Jr., J., Rocha Jr., R.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of Applied MathematicsUniversity of CampinasCampinasBrazil

Personalised recommendations