Advertisement

On Super Yangian Covariance of the Triple Product System

  • Shao-Kui Yao
  • Peng Liu
  • Xiao-Yu Jia
Article
  • 22 Downloads

Abstract

We investigate the relation between a triple product system and the super Yangian \(Y(\mathfrak {gl}(2|1))\). We present the super Yangian covariance structure for a triple product system associated with a rational R-matrix. Moreover, we obtain the ternary Hopf algebraic structure of the super Yangian \(Y(\mathfrak {gl}(2|1))\).

Keywords

Super Yangian representation Super Yangian covariance Ternary Hopf algebra 

Mathematics Subject Classification

17B80 16T05 16T25 

Notes

Acknowledgements

We would like to express our sincere thanks to the referee for his/her helpful comments and suggestions. We are also grateful to Professor W. Z. Zhao in Capital Normal University for his valuable discussion. This work is supported by the National Natural Science Foundation of China (Grant no. 11375119).

References

  1. 1.
    Baxter, R.J.: Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26, 832–834 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    Bernard, D.: Hidden Yangians in 2D massive current algebras. Commun. Math. Phys. 137, 191–208 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Borowiec, A., Dudek, W., Duplij, S.: Basic concepts of ternary Hopf algebras. J. Kharkov Natl. Univ. ser. Nuclei Particles Fields 529, 21–29 (2001)Google Scholar
  4. 4.
    Bracken, A.J., Gould, M.D., Links, J.R., Zhang, Y.Z.: New supersymmetric and exactly solvable Model of correlated electrons. Phys. Rev. Lett. 74, 2768–2771 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Caudrelier, V., Ragoucy, E.: Lax pair and super-Yangian symmetry of the nonlinear super-Schrodinger equation. J. Math. Phys. 44, 5706–5732 (2003)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chari, V., Pressley, A.: A guide to quantum groups. Cambridge Univ. Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Choudhury, A.G., Chowdhury, A.R.: Nonlocal conservation laws and supersymmetric Heisenberg spin chain. Int. J. Theor. Phys. 33, 2031–2036 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Crampé, N.: Hopf structure of the Yangian \(Y(\mathfrak{sl}_n)\) in the Drinfeld realization. J. Math. Phys. 45, 434–447 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Derkachov, S., Karakhanyan, D., Kirschner, R.: Heisenberg spin chains based on \(\mathfrak{sl}(2|1)\) symmetry. Nucl. Phys. B 583, 691–720 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Drinfel’d, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Sov. Math. Dokl. 32, 254–258 (1985)zbMATHGoogle Scholar
  11. 11.
    Drinfel’d, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians Berkeley, pp. 798–820. Academic, New York (1986)Google Scholar
  12. 12.
    Duplij, S.: Polyadic systems, representations and quantum groups. arxiv:1308.4060v3
  13. 13.
    Duplij, S.: Polyadic systems, representations and quantum groups. J. Kharkov Natl. Univ. ser. Nuclei Part. Fields 3, 50–59 (2012)Google Scholar
  14. 14.
    Essler, F.H.L., Korepin, V.E.: Higher conservation laws and algebraic Bethe ansatz for the snpersymmetric \(t\)-\(J\) model. Phys. Rev. B 46, 9147–9162 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    Faddeev, L.D.: History and perspective of quantum groups. Milan J. Math. 74, 279–294 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gomis, J., Milanesi, G., Russo, J.G.: Bagger-Lambert theory for general Lie algebras. J. High Energy Phys. 06, 075 (2008)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Goze, Z.: Rausch de Traubenberg, M.: Hopf algebras for ternary algebras. J. Math. Phys. 50, 063508 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hutsalyuk, A., Lyashik, A., Pakuliak, S.Z., Ragoucy, E., Slavnov, N.A.: Scalar products of Bethe vectors in models with \(\mathfrak{gl}(2|1)\) symmetry 1. Super-analog of Reshetikhin formula. J. Phys A Math. Theor. 49, 454005 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Hutsalyuka, A., Liashykc, A., Pakuliaka, S.Z., Ragoucyg, E., Slavnovh, N.A.: Norm of Bethe vectors in models with \(\mathfrak{gl}(m|n)\) symmetry. Nucl. Nucl. Phys. B 926, 256–278 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Jia, X.Y., Yao, S.K., Wu, K., Zhao, W.Z.: On Yangian covariance of the triple product system. J. Math. Phys. 56, 083506 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Jimbo, M.: A \(q\)-difference analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Jimbo, M., Miwa, T.: Solitons and infinite-dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ju, G.X., Wu, K., Wang, S.K.: The algebra structure of the \(\mathfrak{gl}(m|n)\) color Calogero-Sutherland models. J. Math. Phys. 39, 2813–2820 (1998)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)CrossRefGoogle Scholar
  25. 25.
    Kulish, P.P., Sklyanin, E.K.: On the solution of the YangCBaxter equation. Zap. Nauchn. Semin. LOMI 95, 129C160 (1980)Google Scholar
  26. 26.
    Loebbert, F.: Lectures on Yangian symmetry. J. Phys. A Math. Theor. 49, 323002 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mackay, N.J.: Introduction to Yangian symmetry in integrable field theory. Int. J. Mod. Phys. A. 20, 7189–7217 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Muradian, R., Santana, A.E.: Hopf structure in Nambu-Lie \(n\)-algebras. Theor. Math. Phys. 114, 67–72 (1998)CrossRefGoogle Scholar
  29. 29.
    Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2414 (1973)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Nazarov, N.: Quantum Berezinian and the classical Capelli identity. Lett. Math. Phys. 21, 123–131 (1991)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Okubo, S.: Triple products and Yang-Baxter equation. I. Octonionic and quaternionic triple systems. J. Math. Phys. 34, 3273–3291 (1993)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Okubo, S.: Triple products and Yang-Baxter equation. II. Orthogonal and symplectic ternary systems. J. Math. Phys. 34, 3292–3315 (1993)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Palmkvist, J.: Three-algebras, triple systems and 3-graded Lie superalgebras. J. Phys. A Math. Theor. 43, 015205 (2010)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Pfannmüller, M.P., Frahm, H.: Algebraic Bethe ansatz for \(\mathfrak{gl}(2,1)\) invariant 36-vertex models. Nucl. Phys. 479, 575–593 (1996)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Slavnov, N.A.: Multiple communtation relations in the models with \(\mathfrak{gl}(2|1)\) symmetry. Theor. Math. Phys. 189, 1624–1644 (2016)CrossRefGoogle Scholar
  36. 36.
    Stukopin, V.A.: Yangians of Lie superalgebras of type \(A(m, n)\). Funct. Anal. Appl. 28, 217–219 (1994)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Takhtadzhan, L.A., Faddev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. surveys 34, 11–68 (1979)ADSCrossRefGoogle Scholar
  38. 38.
    Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Zeković, Z.: Ternary Hopf algebra. ADM 3, 96–106 (2005)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zhang, R.B.: Representations of super Yangian. J. Math. Phys. 36, 3854–3865 (1995)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhang, C.H., Jia, X.Y., Li, M.L., Wu, K., Zhao, W.Z.: On triple product and rational solutions of Yang-Baxter equation. Commun. Theor. Phys. 62, 1–4 (2014)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Zwiebel, B.I.: Yangian symmetry at two loops for the \(\mathfrak{su}(2|1)\) sector of \(N=4\) SYM. J. Phys. A Math. Theor. 40, 1141–1151 (2007)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  3. 3.Beijing institute of educationBeijingChina

Personalised recommendations