Advertisement

On Complex Representations of Clifford Algebra

  • Marco Budinich
Article
  • 14 Downloads
Part of the following topical collections:
  1. Homage to Prof. W.A. Rodrigues Jr

Abstract

We show that complex representations of Clifford algebra can always be reduced either to a real or to a quaternionic algebra depending on signature of complex space thus showing that spinors are unavoidably either real Majorana spinors or quaternionic spinors and complex spinors disappear. We use this result to support (1, 3) signature for Minkowski space.

Notes

References

  1. 1.
    Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  2. 2.
    Benn, I.M., Tucker, R.W.: An Introduction to Spinors and Geometry with Applications in Physics. Adam Hilger, Bristol (1987)zbMATHGoogle Scholar
  3. 3.
    Budinich, M.: On spinors transformations. J. Math. Phys. 57(7), 071703 (2016). arXiv:1603.02181 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Budinich, M.: On clifford algebras and binary integers. Adv. Appl. Clifford Algebras 27(2), 1007–1017 (2017). arXiv:1605.07062 [math-ph]MathSciNetCrossRefGoogle Scholar
  5. 5.
    Budinich, P., Trautman, A.M.: The Spinorial Chessboard. Trieste Notes in Physics. Springer, Berlin (1988)CrossRefGoogle Scholar
  6. 6.
    Cartan, É.: Les groupes projectifs qui ne laissent invariante aucune multiplicité plane. Bulletin de la Société Mathématique de France 41, 53–96 (1913)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cartan, É.: The Theory of Spinors. Hermann, Paris (1966) (first edition: 1938 in French) Google Scholar
  8. 8.
    Chevalley, C.C.: Algebraic Theory of Spinors. Columbia University Press, New York (1954)zbMATHGoogle Scholar
  9. 9.
    Conrad, K.: Complexification (2018). http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/complexification.pdf. Accessed 21 Dec 2018
  10. 10.
    Dabrowski, L.: Group Actions on Spinors. Lecture Notes. Bibliopolis, Naples (1988)zbMATHGoogle Scholar
  11. 11.
    De Leo, S.: A one-component dirac equation. Int. J. Mod. Phys. A 11(21), 3973–3985 (1996)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    De Leo, S., Rodrigues Jr., W.A.: Quaternionic electron theory: Dirac’s equation. Int. J. Theor. Phys. 37(5), 1511–1529 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Giardino, S.: Quaternionic quantum mechanics in real Hilbert space (2018). arXiv:1803.11523 [quant-ph]
  14. 14.
    Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. In: Canadian Mathematical Society Conference Proceedings, vol. 20, pp. 253–276. American Mathematical Society, Providence (1997)Google Scholar
  15. 15.
    Kugo, T., Townsend, P.: Supersymmetry and the division algebras. Nucl. Phys. B 221(2), 357–380 (1983)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1990)zbMATHGoogle Scholar
  17. 17.
    Okubo, S.: Real representations of finite Clifford algebras. I. Classification. J. Math. Phys. 32(7), 1657–1668 (1991)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Porteous, I.R.: Topological Geometry, II edn. Cambridge University Press, Cambridge (1981)CrossRefGoogle Scholar
  19. 19.
    Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge Studies in Advanced Mathematics, vol. 50. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  20. 20.
    Trautman, A.M.: On complex structures in physics. In: Harvey, A. (ed.) On Einstein’s Path: Essays in Honor of Engelbert Schucking, Chapter 34, pp. 487–495. Springer, New York (1999)CrossRefGoogle Scholar
  21. 21.
    Varlamov, V.V.: Discrete symmetries and clifford algebras. Int. J. Theor. Phys. 40(4), 769–805 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Trieste and INFNTriesteItaly

Personalised recommendations