Advertisement

Consistently Oriented Dart-based 3D Modelling by Means of Geometric Algebra and Combinatorial Maps

  • Víctor-Manuel Soto-FrancésEmail author
  • Emilio-José Sarabia-Escrivá
  • José-Manuel Pinazo-Ojer
Article
  • 29 Downloads

Abstract

The modelling of real world objects is not a straightforward subject. There are many different schemes; constructive solid geometry (CSG), cell decomposition, boundary representation, etcetera. Obviously, somehow, any scheme will be related to any other since they have a common goal. The paper shows how to model general polyhedra as an unordered discrete and finite set of geometric numbers of a projective Clifford Algebra or Geometric Algebra (GA). Clearly, not any randomly generated finite set of geometric numbers will have the structure of an object, this set must have some well defined properties. The topological properties extracted from this set are mapped to a boundary representation scheme based on a type of combinatorial map called generalised map or n-gmap. The n-gmaps have different types of orbits (in the mathematical sense) to which an attribute can be attached. When the attribute has a geometrical meaning, it is said that it is the geometrical embedding of the n-gmap. In this way the n-gmap holds explicitly the topology or structure already defined by the discrete geometry. In our proposal, each single element of a n-gmap is consistently embedded into a geometrical number also known as multi-vector. The scheme has been implemented by modifying an open source code [46] of n-gmaps. This representation has interesting properties. GA and n-gmaps complement and reinforce each other. For instance; it improves the robustness when computing the structure from the geometrical information. It is capable of computing lengths, areas and volumes of any polyhedral complex (with or without holes) using the orbits of the n-gmap (some examples are given). Finally the paper gives hints about other potentialities.

Keywords

Geometric algebra Clifford algebra Multi-vectors n-gmaps Building energy simulation Solid modelling Combinatorial maps Flags Darts 

Nomenclature

Acronyms

v,t,n,b

Vectors in \({\mathbb {R}}^3\)

Greek Symbols

\(\alpha \)

Involution function used to sew darts

\(\beta \)

Scalar number \(\beta \in {\mathbb {R}}\)

Other Symbols

\(\bullet \)

Dot product (inner product)

\(\cdot \)

Geometric product (also, juxtaposition of symbols)

\(\circ \)

Composition of functions

\(\dagger \)

Conjugate operator in Geometric Algebra

\(\tilde{}\)

Reversion operator in Geometric Algebra

\(\wedge \)

Wedge product (outer product)

*

Dual

Notes

Acknowledgements

We would like to thank: The help of Guillaume Damiand for his help in solving doubts about handling the [46] software and for sharing it freely. Randolph Franklin by his kind advice about the computation of lengths, areas and volumes. The reviewers specialized in both disciplines; n-gmaps and GA, for their constructive and helpful comments.

References

  1. 1.
    Alayrangues, S., Damiand, G., Lienhardt, P., Peltier, S.: A Boundary Operator for Computing the Homology of Cellular Structures, Technical report, 71 pages, (2011). HAL id: hal-00683031, https://hal.archives-ouvertes.fr/hal-00683031. Accessed 07 May 2018
  2. 2.
    Alayrangues, S., Daragon, X., Lachaud, J., Lienhardt, P.: Equivalence between closed connected n-G-maps without multi-incidence and n-surfaces. J. Math. Imaging Vis. 32, 122 (2008).  https://doi.org/10.1007/s10851-008-0084-3 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alayrangues, S., Fuchs, L., Lienhardt, P., Peltier, S.: Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results, (2015). HAL id: hal-01142760v2 https://hal.archives-ouvertes.fr/hal-01142760. Accessed 07 May 2018
  4. 4.
    Baig, S.U., Alizadehashrafi, B.: 3D Generalization of Boundary Representation (B-Rep) of Buildings, FIG Congress 2014, Kuala Lumpur, Malaysia, 16-21 June (2014)Google Scholar
  5. 5.
    Bellet, T., Arnould, A., Charneau, S., Fuchs, L.: Modélisation nD à base d’algèbres géométriques, (2008) HAL id: hal-00354183 https://hal.archives-ouvertes.fr/hal-00354183. Accessed 07 May 2018
  6. 6.
    Bellet, T., Arnould, A., Fuchs, L.: Polyhedral embedding of a topological structure. Applied Geometric Algebras in Computer Science and Engineering (AGACSE 2010), Amsterdam, Netherlands (2010) HAL id: hal-00488183 https://hal.archives-ouvertes.fr/hal-00488183. Accessed 07 May 2018
  7. 7.
    Braulio-Gonzalo, M., Bovea, M.D.: Environmental and cost performance of buildings envelope insulation materials to reduce energy demand: Thickness optimisation. Energy Build. 150, 527–545 (2017).  https://doi.org/10.1016/j.enbuild.2017.06.005 CrossRefGoogle Scholar
  8. 8.
    Brisson, E.: Representing geometric structures in d dimensions: topology and order. Discrete Comput. Geometry 9, 387426 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chard, J.A., Shapiro, V.: A multivector data structure for differential forms and equations. Math. Comput. Simul. 54, 3364 (2000).  https://doi.org/10.1016/S0378-4754(00),00198-1 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chaïm Zonnenberg, PhD. thesis: Conformal Geometric Algebra Package, Utrecht University Department of Information and Computing Sciences, (July 23, 2007)Google Scholar
  11. 11.
    Chisolm, E.: Geometric Algebra, (2012) arXiv: 1205.5935v1 [math-ph]
  12. 12.
    Conradt, O.: Mathematical physics in space and counterspace,(Arbeitshefte, KLEINE REIHE, Band 4), Mathematisch-Astronomische Sektion am Goetheanum und Verlag am Goetheanum, CH-4143 Dornarch, (2008), ISBN-13: 978-3723513330Google Scholar
  13. 13.
    Conradt, O.: Mechanics in space and counterspace, Journal of Mathematical Physics 41 (6995-7028) (Oct 2000).  https://doi.org/10.1063/1.1288495
  14. 14.
    Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl, W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K., Liesen, R.J., Witte, D.E.J. Glazer, J.: EnergyPlus: creating a new-generation building energy simulation program. Energy Build. 33(4), 319-331 (2001) https://energyplus.net/. Accessed 07 May 2018
  15. 15.
    Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. CRC Press, Boca Raton, (2015), ISBN: 978-1-4822-0653-1Google Scholar
  16. 16.
    Damiand, G., Teillaud, M.: A Generic Implementation of dD Combinatorial Maps in CGAL, International Meshing Roundtable, Oct 2014, Londres, United Kingdom. 82, pp.46 - 58, (2014),  https://doi.org/10.1016/j.proeng.2014.10.372 HAL id: hal-01090011 http://doc.cgal.org/ (Linear Cell Complex). Accessed 07 May 2018
  17. 17.
    Damiand, G.: Contributions aux Cartes Combinatoires et Cartes Généralises : Simplification, Modèles, Invariants Topologiques et Applications, HAL Id: tel-00538456 (2010)Google Scholar
  18. 18.
    Diakité, A.A., Damiand, G., Maercke, D.V.: Topological reconstruction of complex 3d buildings and automatic extraction of levels of detail, Eurographics Workshop on Urban Data Modelling and Visualisation.(Strasbourg, France.), hal-01011376, pp. 25–30, (2014).  https://doi.org/10.2312/udmv.20141074 https://hal.archives-ouvertes.fr/hal-01011376. Accessed 07 May 2018
  19. 19.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry, A volume in The Morgan Kaufmann Series in Computer Graphics, (2007). ISBN: 978-0-12-369465-2Google Scholar
  20. 20.
    Dorst, L.: 3D Oriented Projective Geometry Through Versors of \({\mathbb{R}}^{3,3}\), Advances in Applied Clifford Algebras,  https://doi.org/10.1007/s00006-015-0625-y
  21. 21.
    Fradin, D., Meneveaux, D., Lienhardt, P.: Hierarchy of generalized maps for modeling and rendering complex indoor scenes, Tech. Rep., Rapport de recherche No 2005-04, Signal Image Communication laboratory, CNRS, University of Poitiers, France (November 2005)Google Scholar
  22. 22.
    Francés, V.M.S.: Modified version of MOKA implementing the GA method presented in this paper, https://github.com/vsotofrances/MOKACLIFFORD/tree/multivect. Accessed 07 May 2018
  23. 23.
    Franklin, W.R.: Polygon properties calculated from the vertex neighborhoods, in: N. ACM New York (Ed.), Proceeding SCG ’87, Proceedings of the third annual symposium on Computational geometry, (1987) ISBN:0-89791-231-4  https://doi.org/10.1145/41958.41969 https://www.ecse.rpi.edu/~wrf/Research/Short_Notes/volume.html. Accessed 07 May 2018
  24. 24.
    Genera3D, automation of the 3D model creation of a building, http://vpclima2.ter.upv.es/. Accessed 07 May 2018
  25. 25.
    Gunn, C.: Guide to Geometric Algebra in Practice. (Chapter: On the Homogeneous Model of Euclidean Geometry) Ed. Leo Dorst & Joan Lasenby,Springer-Verlag London Limited (2011), ISBN: 978-0-85729-810-2  https://doi.org/10.1007/978-0-85729-811-9
  26. 26.
    Gunn, C.: On the Homogeneous Model Of Euclidean Geometry. arXiv:1101.4542 [math.MG]. Accessed 07 May 2018
  27. 27.
    Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, D. Reidel Publishing Company, : ISBN-13: 978–9027725615. ISBN- 10, 9027725616 (1984)Google Scholar
  28. 28.
    Hestenes, D., Ziegler, R.: Projective geometry with clifford algebra. Acta Appl. Math. 23, 25–63 (1991)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hitzer, E.: Introduction to Clifford’s geometric algebra. J. Soc. Instrum. Control Eng. 51(4), 338–350 (2012). arXiv:1306.1660. Accessed 07 May 2018
  30. 30.
    HULC, Unified Tool LIDER-CALENER, Version 1.0.1493.1049. http://www.codigotecnico.org/index.php/menu-recursos/menu-aplicaciones/282-herramienta-unificada-lider-calener (2016). Accessed 01 July 2016
  31. 31.
    Kraemer, P., Untereiner, L., Jund, T., Thery, S., Cazier, D.: CGoGN:n-dimensional Meshes with Combinatorial Maps, J. Sarrate & M. Staten (eds.). In: Proceedings of the 22nd International Meshing Roundtable, Springer International Publishing Switzerland (2013)  https://doi.org/10.1007/978-3-319-02335-9_27 https://github.com/cgogn/CGoGN. Accessed 07 May 2018
  32. 32.
    Li, H., Huang, L., Shao, C., Dong, L.: Three-Dimensional Projective Geometry with Geometric Algebra, (2015). arXiv:1507.06634v1
  33. 33.
    Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Comput. Aided Des. 23(1), 59–82 (1991).  https://doi.org/10.1016/0010-4485(91)90082-8 CrossRefzbMATHGoogle Scholar
  34. 34.
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. 4(3), 275324 (1994).  https://doi.org/10.1142/S0218195994000173 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    OFF 3D graphics data format. http://paulbourke.net/dataformats/. Accessed 07 May 2018
  36. 36.
    Pappas, R.: Chapter: Oriented projective geometry with Clifford Algebra, in book titled, Clifford algebras with numeric and symbolic computations, Editors Rafal Ablamowicz, Pertti Lounesto, Josep M. Parra, Birkhäuser, (1996) ISBN: 978-1-4615-8159-8, ISBN 978-1-4615-8157-4 (eBook)  https://doi.org/10.1007/978-1-4615-8157-4
  37. 37.
    Sokolov, A.: A key to projective model of homogeneous metric spaces, (2014) arXiv:1412.8095v1 [math.MG]
  38. 38.
    Sokolov, A.: Clifford algebra and the projective model of Elliptic spaces, (2013) arXiv:1310.2713v1 [math.MG]
  39. 39.
    Sokolov, A.: Clifford algebra and the projective model of homogeneous metric spaces: Foundations, (2013) arxiv:1307.2917v1 [math.MG]
  40. 40.
    Sokolov, A.: Clifford algebra and the projective model of Hyperbolic spaces (2016) arXiv:1602.08562v1 [math.MG]
  41. 41.
    Sokolov, A.: Clifford algebra and the projective model of Minkowski (pseudo-Euclidean) spaces (2013) arXiv:1307.4179v2 [math.MG]
  42. 42.
    Stein, P.: geoma v1.2.2007.08.20, C++ software, http://nklein.com/tags/geoma/. Accessed 07 May 2018
  43. 43.
    Stolfi, J.: Oriented Projective Geometry. A Framework for Geometric Computations , 1st Edition ISBN 9781483265193 , Academic Press, Published 28th July 1991Google Scholar
  44. 44.
    Stolfi, J.: Primitives for computational geometry, Technical report SRC-RR-36, Systems research center (January 27 1989). http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-36.html. Accessed 07 May 2018
  45. 45.
    Tonti, E.: Why starting from differential equations for computational physics? J. Comput. Phys. 257, 1260–1290 (2014).  https://doi.org/10.1016/j.jcp.2013.08.016 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Vidil, F., Damiand, G., Dexet-Guiard, M., Guiard, N., Ledoux, F., Fousse, A., Fradin, D., Liang, Y., Meneveaux, D., Bertrand, Y.: MOKA. http://moka-modeller.sourceforge.net/ (2002). Accessed 07 May 2018
  47. 47.
    Zonnenberg, C.: Conformal Geometric Algebra Package, (2007), http://www.cs.uu.nl/groups/MG/gallery/CGAP/index.html. Accessed 07 May 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Termodinámica AplicadaETSII, Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations