On PBW-Deformations of Braided Exterior Algebras

  • Marco MatassaEmail author


We classify PBW-deformations of quadratic-constant type of certain quantizations of exterior algebras. These correspond to the fundamental modules of quantum \(\mathfrak {sl}_N\), their duals, and their direct sums. We show that the first two cases do not admit any deformation, while in the third case we obtain an essentially unique algebra with good properties. We compare this algebra with other quantum Clifford algebras appearing in the literature.



I would like to thank Cristian Vay for useful discussions.


  1. 1.
    Bautista, R., Criscuolo, A., Durdević, M., Rosenbaum, M., Vergara, J.D.: Quantum Clifford algebras from spinor representations. J. Math. Phys. 37(11), 5747–5775 (1996)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Berenstein, A., Zwicknagl, S.: Braided symmetric and exterior algebras. Trans. Am. Math. Soc. 360(7), 3429–3472 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Braverman, A., Gaitsgory, D.: Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type. J. Algebra 181(2), 315–328 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Connes, A.: Noncommutative Geometry. Academic, New York (1995)zbMATHGoogle Scholar
  5. 5.
    Čap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras. Commun. Algebra 23(12), 4701–4735 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D’Andrea, F., Dąbrowski, L.: Dirac operators on quantum projective spaces. Commun. Math. Phys. 295(3):731–790 (2010)Google Scholar
  7. 7.
    Jantzen, J.C.: Lectures on Quantum Groups, vol. 6. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  8. 8.
    Klimyk, A.U., Schmüdgen, K.: Quantum Groups and Their Representations, vol. 552. Springer, Berlin (1997)CrossRefGoogle Scholar
  9. 9.
    Krähmer, U.: Dirac operators on quantum flag manifolds. Lett. Math. Phys. 67(1), 49–59 (2004)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Krähmer, U., Tucker-Simmons, M.: On the Dolbeault–Dirac operator of quantized symmetric spaces. Trans. Lond. Math. Soc. 2(1), 33–56 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lehrer, G.I., Zhang, Hechun, Zhang, R.B.: A quantum analogue of the first fundamental theorem of classical invariant theory. Commun. Math. Phys. 301(1), 131–174 (2011)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Matassa, M.: Dolbeault–Dirac Operators, quantum clifford algebras and the parthasarathy formula. Adv. Appl. Cliff. Algebras 27(2), 1581–1609 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Matassa, M.: Dolbeault-Dirac operators on quantum projective spaces. J. Lie Theory 28(1), 211–244 (2018)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Matassa, M.: The Parthasarathy formula and a spectral triple for the quantum Lagrangian Grassmannian of rank two (2018). arXiv:1810.06456
  15. 15.
    Polishchuk, A., Positselski, L.: Quadratic Algebras, vol. 37. American Mathematical Society, Providence (2005)zbMATHGoogle Scholar
  16. 16.
    Tucker-Simmons, M.: Quantum algebras associated to irreducible generalized flag manifolds (2013). PhD thesis, available at arXiv:1308.4185
  17. 17.
    Walton, C., Witherspoon, S.: PBW deformations of braided products. J. Algebra 504, 536–567 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zwicknagl, S.: R-matrix Poisson algebras and their deformations. Adv. Math. 220(1), 1–58 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Vakgroep WiskundeVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations