Advertisement

Screw Theory in Lorentzian Space

  • Sıddıka Özkaldı KarakuşEmail author
Article
  • 97 Downloads

Abstract

In this paper we present various results about the six dimensional vectors obtained from the tangent operators of spatial motion, called as screws, in Lorentzian space. Each screw has an axis defined by six Plücker coordinates in Lorentzian space. The manipulation of screw coordinate transformations has been simplified by using Lorentz matrix multiplication and dual number algebra. Also, we showed that screw displacement is representation as the exponential of a dual angular velocity matrix by using the dual orthogonal matrices in Lorentzian space.

Keywords

Kinematic Lorentzian space L-matrix multiplication Screw Tangent operator 

Mathematics Subject Classification

Primary 70B10 Secondary 53A17 51B20 

References

  1. 1.
    Ball, R.S.: The Theory of Screws: A study in the Dynamics of a Rigid Body. Hodges, Foster (1876)zbMATHGoogle Scholar
  2. 2.
    Clifford, W.K.: Preliminary sketch of bi-quaternions. Proc. Lond. Math. Soc. 4(64), 361–395 (1873)Google Scholar
  3. 3.
    Durmaz, O., Aktaş, B., Gündoğan, H.: The derivative and tangent operators of a motion in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 14(4) (2017)Google Scholar
  4. 4.
    Gu, Y.L., Luh, J.Y.S.: Dual Number transformation and its applications to robotics. IEEE J. Robot. Autom. Ra-3(6), 615–623 (1987)Google Scholar
  5. 5.
    Gundogan, H., Kecilioglu, O.: Lorentzian matrix multiplication and the motions on Lorentzian plane. Glas. Mat. 41, 329–334 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gundogan, H., Ozkaldı, S.: Clifford product and Lorentzian plane displacement in 3-dimensional Lorentzian space. Adv. Appl. Clifford Algebra 19, 43–50 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hacısalihoğlu, H.H.: Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üniversitesi Fen-Edb Fakültesi, Ankara (1983)Google Scholar
  8. 8.
    Kecilioglu, O., Ozkaldi, S., Gundogan, H.: Rotations and screw motion with timelike vector in 3-dimensional Lorentzian space. Adv. Appl. Clifford Algebra 22, 1081–1091 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Knossow, D., Ronfard, R., Horaud, R.: Human motion tracking with a kinematic parameterization of extremal contours. Int. J. Comput. Vis. 79, 247–269 (2008)CrossRefGoogle Scholar
  10. 10.
    Lopez, R.: Differential geometry of curves and surfaces in Lorentz–Minkowski space. Int. Electron. J. Geom. 7, 44–107 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    McCarthy, J.M., Michael, S., Song, G.: Geometric Design of Linkages. Springer, Berlin. ISBN 978-1-4419-7892-9 (2010)Google Scholar
  12. 12.
    McCarthy, J.M.: An Introduction to Theoretical Kinematics. The MIT Press, Cambridge, Massachusetts, London, England (1990)Google Scholar
  13. 13.
    O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press Inc, New York (1983)zbMATHGoogle Scholar
  14. 14.
    Ozkaldı, S., Gundogan, H.: Cayley formula, Euler parameters and rotations in 3-dimensional Lorentzian space. Adv. Appl. Clifford Algebra 20, 367–377 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ozkaldı, S., Gundogan, H.: Dual split quaternions and screw motion in 3-dimensional Lorentzian space. Adv. Appl. Clifford Algebra 21, 193–202 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ratcliffe, R.G.: Foundations of Hyperbolic Manifolds. Springer, New York (1994)CrossRefGoogle Scholar
  17. 17.
    Rico-Martinez, J.M., Gallardo-Alvarado, J.: A simple method for the determination of angular velocity and acceleration of a spherical motion through quaternions. Meccanica 35(2), 111–118 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rosenfeld, B.: Geometry of Lie Groups. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  19. 19.
    Ugurlu, H.H., Çalışkan, A.: The study mapping for directed spacelike and timelike lines in Minkowski 3-space \(\mathbb{R}_{1}^{3}\). Math. Comp. Appl. 1(2), 142–148 (1996)zbMATHGoogle Scholar
  20. 20.
    Yang, A.T.: Calculus of screws. In: Spillers, William R. (ed.) In basic Questions of Design Theory, pp. 266–281. Elsevier, Amsterdam (1974)Google Scholar
  21. 21.
    Yaylı, Y., Çalışkan, A., Uğurlu, H.H.: The E. Study mapping of circles on dual hyperbolic and Lorentzian unit spheres \(\mathbb{H} _{0}^{2}\) and \(\mathbb{S}_{1}^{2}\). Math. Proc. R. Irish Acad. 102(A(1)), 37–47 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and ArtBilecik Seyh Edebali UniversityBilecikTurkey

Personalised recommendations