Advertisement

Finding n-th Roots of a \(2\times 2\) Real Matrix Using De Moivre’s Formula

  • Mustafa ÖzdemirEmail author
Article
  • 59 Downloads

Abstract

In this study, we give a new method for finding n-th roots of a \(2\times 2\) real matrix with the help of hybrid numbers. We define argument and polar forms of a \(2\times 2\) matrix and express the De Moivre’s formulas according to the type and character of the matrix.

Keywords

Hybrid Numbers Roots of Matrices De Moivre Formulas 

Mathematics Subject Classification

15A24 15A60 16S50 15A66 

Notes

Acknowledgements

This work was supported by Research Fund of the Akdeniz University. Project ID: 3897.

References

  1. 1.
    Björck, A., Hammarling, S.: A Schur method for the square root of a matrix. Linear Algebra Appl. 52/53, 127–140 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Choudhry, A.: Extraction of nth roots of \(2\times 2\) matrices. Linear Algebra Appl. 387, 183–192 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dattoli, G., Licciardi, S., Pidatella, R.M., Sabia, E.: Hybrid complex numbers: the matrix version. Adv. Appl. Clifford Algebras 28, 58 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Denman, E.D.: Roots of real matrices. Linear Algebra Appl. 36, 133–139 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Higham, N.J.: Computing real square roots of a real matrix. Linear Algebra Appl. 88(89), 405–430 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Higham, N.J.: Newton’s Method for the matrix square root. Math. Comput. 46(174), 537–549 (1986)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Lannazo, B.: On the Newton Method for the matrix pth root. SIAM J. Matrix Anal. Appl. 28(2), 503–523 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    MacKinnon, N.: Four routes to matrix roots. Math. Gaz. 73, 135–136 (1989)CrossRefGoogle Scholar
  9. 9.
    Özdemir, M.: Introduction to hybrid numbers. Adv. Appl. Clifford Algebras 28, 11 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Özdemir, M.: The roots of a split quaternion. Appl. Math. Lett. 22(2), 258–263 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Northshield, S.: Square roots of \(2\times 2\) matrices, contemporary mathematics (2010)Google Scholar
  12. 12.
    Sadeghi, A., Izani, A., Ahmad, A.: Computing the pth Roots of a Matrix with Repeated Eigenvalues. Appl. Math. Sci. 5(53), 2645–2661 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sambasiva, S. Rao, et.al.: On the square roots of a matrix., JGRMA 1(13), 30–33 (2013)Google Scholar
  14. 14.
    Scott, Nigel H.: On Square-Rooting Matrices, The Mathematical Gazette 74(468), 111–114 (1990)Google Scholar
  15. 15.
    Sullivan, D.: The square roots of \(2\times 2\) matrices. Math. Mag. 66(5), 314–316 (1993)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bit-Shun, Tam, Huang, P.R.: Nonnegative square roots of matrices. Linear Algebra Appl. 498, 404–440 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yuttanan, B., Nilrat, C.: Roots of Matrices, Songklanakarin. J. Sci. Technol. 27(3), 659–665 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsAkdeniz UniversityAntalyaTurkey

Personalised recommendations