Advertisement

(Para-) Kähler Structures on \(\rho \)-Commutative Algebras

  • Zahra Bagheri
  • Esmaeil Peyghan
Article
  • 6 Downloads

Abstract

Recently, geometrics objects such as \(\rho \)-forms, metrics, Levi–Civita connection, differential calculus were introduced on \(\rho \)-commutative algebras. In this paper, we intend to extend another geometric objects such as almost complex structure, almost para-complex structure, Hermitian metric, para-Hermitian metric, Kähler and para-Kähler forms, on it and introduce new concepts which we will call Kähler \(\rho \)-commutative algebras and para-Kähler \(\rho \)-commutative algebras.

Keywords

Almost product structure Kähler structure Para-Kähler structure \(\rho \)-commutative algebra 

Mathematics Subject Classification

53B15 53C05 17B75 53D05 

References

  1. 1.
    Alekseevsky, D.V., Medori, C., Tomassini, A.: Para-Kähler Einstein metrics on homogeneous manifolds. CR. Acad. Sci. Paris, ser. I. 347, 69–72 (2009)CrossRefGoogle Scholar
  2. 2.
    Bajo, I., Benayadi, S.: Abelian para-Kähler structures on Lie algebras. Diff. Geom. Appl. 29, 160173 (2011)CrossRefGoogle Scholar
  3. 3.
    Bneyadi, S., Boucetta, M.: On para-Kähler and hyper-para-Kähler Lie algebras. J. Algebra 436, 61–101 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beggs, E., Paul Smith, S.: Non-commutative complex differential geometry. J. Geom. Phys. 72, 7–33 (2013)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bongaarts, P.J., Pijls, H.G.J.: Almost commutative algebra and differential calculus on the quantum hyperplane. J. Math. Phys. 35(2), 959–970 (1994)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bubuianu, L., Irwin, K., Vacaru, S.: Heterotic supergravity with internal almost-Kähler spaces; instantons for SO(32), or E8 x E8, gauge groups; and deformed black holes with soliton, quasiperiodic and/or pattern-forming structures. Class. Quant. Grav. 34, 075012 (2017). arXiv: 1611.00223 [physics.gen-ph]ADSCrossRefGoogle Scholar
  7. 7.
    Ciupala, C.: Linear connections on almost commutative algebras. Acta. Th. Univ. Comenianiae 72(2), 197207 (2003)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ciupala, C.: Connections and distributions on quantum hyperplane. Czech. J. Phys. 54(8), 921932 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ciupala, C.: 2-\(\rho \)-derivation on a \(\rho \)-algebra and application to the quaternionic algebra. Int. J. Geom. Meth. Mod. Phys. 4(3), 457–469 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dubois-Violette, M.: Dérivations et calcul différentiel non commutatif. C.R. Acad. Sci. Paris, série I. 307, 403–408 (1988)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kähler, E.: Über eine bemerkenswerte Hermtesche metrik. Abn. Sem. Unv. Hamburg 9, 173–186 (1933)CrossRefGoogle Scholar
  12. 12.
    Majid, S.: Riemannian geometry of quantum groups and finite groups with nonuniversal differentials. Commun. Math. Phys. 225, 131–170 (2002)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ngakeu, F.: Levi-Civita connection on almost commutative algebras. Int. J. Geom. Meth. Mod Phys. 4(7), 10751085 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ngakeu, F., Majid, S., Lambert, D.: Noncommutative Riemannian geometry of the alternating group \(A_4\). J. Geom. Phys. 42, 259–282 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Vacaru, S.: Non-commutative Einstein, almost Kähler-Finsler and Quantum Deformations, Chapter 24 in: The Algebraic Way. Space, Time and Quantum Beyond Peaceful Coexistence, ed. Ignazio Licata, Wor. Scient. Singa, pp. 661–695 (2016)CrossRefGoogle Scholar
  16. 16.
    Vacaru, S.: On axiomatic formulation of gravity and matter field theories with MDRs and Finsler-Lagrange-Hamilton geometry on (co) tangent Lorentz bundles. arXiv: 1801.06444 [physics.gen-ph]; EPJP 1801
  17. 17.
    Vacaru, S.: Almost Kähler Ricci flows and Einstein and Lagrange–Finsler structures on Lie algebroids. Medit. J. Math. 12, 1397–1427 (2015). arXiv: 1306.2813 [math.DG]CrossRefGoogle Scholar
  18. 18.
    Vacaru, S.: Einstein gravity as a nonholonomic almost Kähler geometry, Lagrange–Finsler variables, and deformation quantization. J. Geom. Phys. 60, 1289–1305 (2010). arXiv: 0709.3609 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Vacaru, S.: The algebraic index theorem and Fedosov quantization of Lagrange–Finsler and Einstein spaces. J. Math. Phys. 54, 073–511 (2013). arXiv: 1005.3647 [math-ph]CrossRefGoogle Scholar
  20. 20.
    Vacaru, S.: Deformation quantization of almost Kähler models and Lagrange–Finsler spaces. J. Math. Phys. 48, 123509 (2007). [14 pages]; arXiv: 0707.1519 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceArak UniversityArakIran

Personalised recommendations