Advertisement

Eigen-Decomposition of Quaternions

  • Roger M. Oba
Article
  • 4 Downloads

Abstract

This paper introduces biquaternion eigen-decomposition theory (via Peirce decomposition) with respect to a selected quaternion with a non-zero vector part. The eigen-decomposition allows evaluation of polynomials and power series with real coefficients as functions of quaternions. This extension of analytic functions to functions of quaternions requires only standard complex function evaluation. The theory also applies to quaternion rotations. The theory uses biquaternion calculations indicated by matrix methods via the algebraic isomorphism between Hamilton’s biquaternions and appropriate \(4\times 4\) complex matrices. The isomorphism preserves algebraic structure. In particular, the left and right biquaternion multiplication by the selected quaternion maps to left and right matrix multiplication, respectively. This unifies the representation of the left and right quaternion multiplication as a linear map into a single matrix form. This matrix, as a linear operator, acts on matrices, so that the eigenvectors have matrix form that maps into the biquaternions. Use of an alternate quaternion basis results in a similarity transform of the representation matrix, preserving eigenvalues across change of basis. The similarity transform allows simple eigenvector calculation. The matrix for the selected quaternion has two identical, complex conjugate pairs of eigenvalues. Each pair corresponds to two complex conjugate pairs of eigenvector biquaternions, an idempotent pair and a nilpotent pair. Idempotent and nilpotent eigenvectors correspond to the commuting and non-commuting parts, respectively, of quaternion multiplication.

Keywords

Biquaternion Eigenvectors Idempotent Nilpotent Quaternion function theory 

Mathematics Subject Classification

11R52 15A18 30G35 

Notes

Acknowledgements

This research is sponsored by the Office of Naval Research.

References

  1. 1.
    Apostol, T.M.: Calculus, vol. II, 2nd edn. Wiley, Hoboken (1969)zbMATHGoogle Scholar
  2. 2.
    Baek, J., Jeon, H., Kim, G., Han, S.: Visualizing quaternion multiplication. IEEE Access 5, 8948–8955 (2017).  https://doi.org/10.1109/ACCESS.2017.2705196 CrossRefGoogle Scholar
  3. 3.
    Campos, H.M., Kravchenko, V.V.: Fundamentals of bicomplex pseudoanalytic function theory: Cauchy integral formulas, negative formal powers and schrödinger equations with complex coefficients. Complex Anal. Oper. Theory 7(2), 485–518 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ell, T.A., Le Bihan, N., Sangwine, S.J.: Quaternion Fourier Transforms for Signal and Image Processing. Wiley, Hoboken (2014)CrossRefGoogle Scholar
  5. 5.
    Flaut, C., Shpakivskyi, V.: Real matrix representations for the complex quaternions. Adv. Appl. Clifford Algebras 23(3), 657–671 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Francis, M.R., Kosowsky A, A.: The construction of spinors in geometric algebra. Ann. Phys. 317(2), 383–409 (2005)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Futagawa, M.: On the theory of functions of a quaternary variable (Part II). Tohoku Math. J. 35, 69–120 (1928)zbMATHGoogle Scholar
  8. 8.
    Groß, J., Trenkler, G., Troschke, S.-O.: Quaternions: further contributions to a matrix oriented approach. Linear Algebra Appl. 326, 205–213 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Imaeda, K.: A new formulation of classical electrodynamics. Il Nuovo Cimento B (1971-1996) 32(1), 138–162 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuipers, J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton (2002)zbMATHGoogle Scholar
  11. 11.
    Lounesto, P.: Clifford Algebras and Spinors, vol. 286. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  12. 12.
    Luna-Elizarraras, M., Shapiro, M., Struppa, D., Vajiac, A.: Bicomplex numbers and their elementary functions. Cubo (Temuco) 14(2), 61–80 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Peirce, B.: Linear associative algebra. Am. J. Math. 4(1), 97–229 (1881)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Riley, J.D.: Contributions to the theory of functions of a bicomplex variable. Tohoku Mathematical J. 5(2), 132–165 (1953)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ringleb, F.: Beiträge zur funktionentheorie in hyperkomplexen systemen I. Rendiconti del Circolo Matematico di Palermo (1884-1940) 57(1), 311–340 (1933)CrossRefGoogle Scholar
  16. 16.
    Rodman, L.: Topics in quaternion linear algebra. Princeton University Press, Princeton (2014)CrossRefGoogle Scholar
  17. 17.
    Sangwine, S.J.: Biquaternion (complexified quaternion) roots of - 1. Adv. Appl. Clifford Algebras 16(1), 63–68 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sangwine, S.J., Ell, T.A., Le Bihan, N.: Fundamental representations and algebraic properties of biquaternions or complexified quaternions. Adv. Appl. Clifford Algebras 21(3), 607–636 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Skornyakov, L.: Encyclopedia of mathematics: peirce decomposition (2011) [cited July 15, 2018]. URL http://www.encyclopediaofmath.org/index.php?title=Peirce_ decomposition&oldid=15535
  20. 20.
    Tian, Y.: Matrix theory over the complex quaternion algebra, arXiv preprint math/0004005Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.Acoustics Division, Code 7167Naval Research LaboratoryWashingtonUSA

Personalised recommendations