Advertisement

Advances in Applied Clifford Algebras

, Volume 27, Issue 2, pp 1633–1646 | Cite as

On \(({\varvec{p,q}})\) Baskakov–Durrmeyer–Stancu Operators

  • Vishnu Narayan MishraEmail author
  • Shikha Pandey
Article

Abstract

In the present paper, we introduce the generalized form of (pq) Baskakov–Durrmeyer Operators with Stancu type parameters. We derived the local and global approximation properties of these operators and obtained the convergence rate and behaviour for the Lipschitz functions. Moreover, we give comparisons and some illustrative graphics for the convergence of operators to some function.

Keywords

(p, q)-integers (p, q)–Baskakov–Durrmeyer operators Linear positive operator 

Mathematics Subject Classification

Primary 41A10 41A25 41A36 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, T., Aral, A., Mursaleen, M.: Approximation by Baskakov–Durrmeyer operators based on \((p,q)\)-integers (communicated)Google Scholar
  2. 2.
    Burban, I.M.: Two-parameter deformation of the oscillator albegra and (p, q) analog of two dimensional conformal field theory. Nonlinear Math. Phys. 2(3–4), 384–391 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Burban, I.M., Klimyk, A.U.: (p, q) differentiation, (p, q) integration and (p, q) hypergeometric functions related to quantum groups. Inter. Trans. Spec. Fucnt. 2(1), 15–36 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Devore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Gairola, A.R., Deepmala, Mishra, L.N. : Rate of Approximation by Finite Iterates of q-Durrmeyer Operators. In: Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (April–June 2016), vol. 86 No. 2, pp. 229–234 (2016). doi: 10.1007/s40010-016-0267-z
  6. 6.
    Gandhi, R.B., Deepmala, Mishra, V.N.: Local and global results for modified Szász—Mirakjan operators. Math. Method. Appl. Sci. (2016). doi: 10.1002/mma.4171
  7. 7.
    Hounkonnou, M.N., Desire, J., Kyemba, B.: R(p, q)-calculus: differentiation and integration. SUT J. Math. 49(2), 145–167 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ibikli, E., Gadjieva, E.A.: The order of approximation of some unbounded function by the sequences of positive linear operators. Turk. J. Math. 19(3), 331–337 (1995)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Jagannathan, R., Rao, K.S.: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In: Proceedings of the International Conference on Number Theory and Mathematical Physics, pp. 20–21 (2005)Google Scholar
  10. 10.
    Kadak, U.: On weighted statistical convergence based on \((p, q\))-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    López-Moreno, A.J.: Weighted simultaneous approximation with Baskakov type operators. Acta Math. Hung. 104(1–2), 143-151 (2004)Google Scholar
  12. 12.
    Mishra, V.N., Khatri, K., Mishra, L.N., Deepmala: Inverse result in simultaneous approximation by Baskakov–Durrmeyer–Stancu operators. J. Inequal. Appl. 2013, 586 (2013). doi: 10.1186/1029-242X-2013-586
  13. 13.
    Mishra, V.N., Pandey, S., Mishra, L.N.: On King Type Modification of (p,q) Baskakov Operators which preserves \(x^2\). arXiv:1603.05510 [math.CA]
  14. 14.
    Mishra, V.N., Pandey, S.: On Chlodowsky variant of \((p, q)\) Kantorovich–Stancu–Schurer operators. Int. J. Anal. Appl. 11(1), 28–39 (2016)MathSciNetGoogle Scholar
  15. 15.
    Mishra, V.N., Khan, H.H., Khatri, K., Mishra, L.N.: Hypergeometric representation for Baskakov–Durrmeyer–Stancu type operators. Bull. Math. Anal. Appl. 5(3), 18–26 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mishra, V.N., Khatri, K., Mishra, L.N.: On simultaneous approximation for Baskakov–Durrmeyer–Stancu type operators. J. Ultra Sci. Phys. Sci. 24(3)A, 567–577 (2012)Google Scholar
  17. 17.
    Mishra, V.N., Khatri, K., Mishra, L.N.: Some approximation properties of q-Baskakov–Beta–Stancu type operators. J. Calc. Var. 2013, Article ID 814824 8 (2013). doi: 10.1155/2013/814824
  18. 18.
    Mishra, V.N., Khatri, K., Mishra, L.N.: Statistical approximation by Kantorovich type Discrete \(q-\)Beta operators. Adv. Differ. Equ. 2013, 345 (2013). doi: 10.1186/1687-1847-2013-345 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mishra, V.N., Sharma, P., Mishra, L.N.: On statistical approximation properties of q-Baskakov–Szász–Stancu operators. Journal of Egyptian Mathematical Society 24(3), 396–401 (2016). doi: 10.1016/j.joems.2015.07.005 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mursaleen, M., Ansari, K.J., Khan, A.: Erratum to “On (p, q)-analogue of Bernstein Operators” [Appl. Math. Comput. 266 (2015) 874–882]. Appl. Math. Comput. 278, 70–71 (2016)Google Scholar
  21. 21.
    Mishra, V.N., Singh, S.N., Singh, S.P., Yadav, V.: On q-series and continued fractions. Cogent Math. 3, 1240414 (2016). doi: 10.1080/23311835.2016.1240414 MathSciNetGoogle Scholar
  22. 22.
    Sahai, V., Yadav, S.: Representations of two parameter quantum algebras and (p, q)-special functions. J. Math. Anal. Appl. 335, 268–279 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Singh, K.K., Gairola, A.R., Deepmala: Approximation theorems for \(q-\) analouge of a linear positive operator by A. Lupas. Int. J Anal. Appl. 12(1), 30–37 (2016)Google Scholar
  24. 24.
    Wafi, A., Rao, N., Rai, D.: Approximation properties by generalized-Baskakov–Kantorovich–Stancu type operators. Appl. Math. Inf. Sci. Lett. 4(3), 111–118 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Applied Mathematics & Humanities DepartmentSardar Vallabhbhai National Institute of TechnologySuratIndia
  2. 2.L. 1627 Awadh Puri Colony, Phase-III, BeniganjOpposite-Industrial Training Institute (I.T.I.)FaizabadIndia

Personalised recommendations